Home
page
Other articles
in this issue |
THz response of nonequilibrium
electrons of highly doped graphene on a polar substrate
Kukhtaruk S. M.
Download this
article
Abstract.
We consider high-frequency response of a system consisting of drifting
electrons in a highly doped graphene and surface polar optical phonons
of a polar substrate. We obtain the dielectric function, the frequencies
and the decrement/increment of cooperative plasmon–optical phonon oscillations
for this interacting system. We find that the response depends significantly
on the degree of nonequilibrium for the electrons. In particular, the interaction
between drifting plasmons and surface polar optical phonons leads to instability
of the electron subsystem due to Vavilov–Cherenkov effect. We suggest
that the hybrid system, a graphene on a polar substrate, is capable of
using in amplifiers or generators of THz electromagnetic radiation.
Keywords: graphene, plasmon, optical phonon,
instability, dielectric function
PACS: 72.80.Vp, 73.20.Mf, 71.38.-k, 71.45.Gm,
77.22.Ch
UDC: 535.58, 535.56, 537.5
Ukr. J. Phys. Opt.
14 24-30
doi: 10.3116/16091833/14/1/24/2013
Received: 01.11.2012
Анотація. Розглянуто надвисокочастотний
відгук системи дрейфуючих електронів сильно
легованого графену та поверхневих оптичних
фононів полярної підкладки. Для взаємодіючої
системи розраховано діелектричну функцію,
частоти та декремент/інкремент спільних
коливань. Показано, що відгук системи суттєво
залежить від ступеня нерівноважності електронів.
Зокрема, взаємодія між плазмонами та поверхневими
оптичними фононами приводить до дрейфової
нестійкості, зумовленої ефектом Вавілова–Черенкова.
Розглянуту систему можна використовувати
для генерації або підсилення терагерцового
електромагнітного випромінювання
|
|
REFERENCES
-
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K, 2009.
The elec-tronic properties of graphene. Rev. Mod. Phys. 81: 109–162.
doi:10.1103/RevModPhys.81.109
-
Wallace P R, 1947. The band theory of graphite. Phys. Rev. 71: 622–634.
http://dx.doi.org/10.1103/PhysRev.71.622
-
Efetov D K and Kim P, 2010. Controlling electron-phonon interactions in
fraphene at ultra-high carrier densities. Phys. Rev. Lett. 105: 256805.
doi:10.1103/PhysRevLett.105.256805
PMid:21231611
-
Fratini S and Guinea F, 2008. Substrate-limited electron dynamics in graphene.
Phys. Rev. B. 77: 195415. doi:10.1103/PhysRevB.77.195415
-
Li X, Barry E A, Zavada J M, Buongiorno Nardelli M and Kim K W, 2010. Surface
polar phonon dominated electron transport in graphene. Appl. Phys. Lett.
97: 232105. doi:10.1063/1.3525606
-
DaSilva A M, Zou K, Jain J K and Zhu J, 2010. Mechanism for current saturation
and energy dissipation in graphene transistors. Phys. Rev. Lett. 104: 236601.
doi:10.1103/PhysRevLett.104.236601
PMid:20867258
-
Perebeinos V and Avouris P, 2010. Inelastic scattering and current saturation
in graphene. Phys. Rev. B. 81: 195442. doi:10.1103/PhysRevB.81.195442
-
Zou K, Hong X, Keefer D and Zhu J, 2010. Deposition of high-quality HfO2
on graphene and the effect of remote oxide phonon scattering. Phys. Rev.
Lett. 105: 126601. doi:10.1103/PhysRevLett.105.126601
PMid:20867662
-
Konar A, Fang T and Jena D, 2010. Effect of high-κ gate dielectrics on
charge transport in graphene-based field effect transistors. Phys. Rev.
B. 82: 115452. doi:10.1103/PhysRevB.82.115452
-
Strikha M V, 2012. Non-volatile memory and IR radiation modulators based
upon graphene-on-ferroelectric substrate. A review. Ukr. J. Phys. Opt.,
Suppl. 3. 13: S5–S26. doi:10.3116/16091833/13/1/S5/2012
-
Jablan M, Buljan H and Soljačić M, 2009. Plasmonics in graphene at infrared
frequencies. Phys. Rev. B. 80: 245435. doi:10.1103/PhysRevB.80.245435
-
Hwang E H, Sensarma R and Das Sarma S, 2010. Plasmon-phonon coupling in
graphene. Phys. Rev. B. 82: 195406. doi:10.1103/PhysRevB.82.195406
-
Koch R J, Seyller Th and Schaefer J A, 2010. Strong phonon-plasmon coupled
modes in the graphene/silicon carbide heterosystem. Phys. Rev. B. 82: 201413(R).
doi:10.1103/PhysRevB.82.201413
-
Jablan M, Soljačić M and Buljan H, 2011. Unconventional plasmon-phonon
coupling in gra-phene. Phys. Rev. B. 83: 161409(R). doi:10.1103/PhysRevB.83.161409
-
Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K,
Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A
H, Ning Lau C, Keil-mann F and Basov D N, 2011. Infrared nanoscopy of dirac
plasmons at the graphene-SiO2 in-terface. Nano Lett. 11: 4701–5. doi:10.1021/nl202362d
PMid:21972938
-
Kukhtaruk S M, 2008. High-frequency properties of systems with drifting
electrons and polar optical phonons. Semicond. Phys., Quant. Electron.
and Optoelectron. 11: 43–49.
-
Sydoruk O, Kalinin V and Solymar L, 2010. Terahertz instability of optical
phonons interact-ing with plasmons in two-dimensional electron channels.
Appl. Phys. Lett. 97: 062107. doi:10.1063/1.3479416
-
Li X, Barry E A, Zavada J M, Buongiorno Nardelli M and Kim K W, 2010. Influence
of elec-tron-electron scattering on transport characteristics in monolayer
grapheme. Appl. Phys. Lett. 97: 082101. doi:10.1063/1.3483612
-
Fang T, Konar A, Xing H and Jena D, 2011. High-field transport in two-dimensional
gra-phene. Phys. Rev. B. 84: 125450. doi:10.1103/PhysRevB.84.125450
-
Born M and Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon
Press (1954).
-
Lowndes R P, 1972. Anharmonicity in the silver and thallium halides: far-infrared
dielectric response. Phys. Rev. B. 6: 1490–1498. doi:10.1103/PhysRevB.6.1490
-
Lowndes R P, 1972. Anharmonicity in the silver and thallium halides: low-frequency
dielec-tric response. Phys. Rev. B. 6: 4667–4674. doi:10.1103/PhysRevB.6.4667
(c) Ukrainian Journal
of Physical Optics |