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Abstract. We consider high-frequency response of a system consisting of drifting 
electrons in a highly doped graphene and surface polar optical phonons of a polar 
substrate. We obtain the dielectric function, the frequencies and the  
decrement/increment of cooperative plasmon–optical phonon oscillations for this  
interacting system. We find that the response depends significantly on the degree of 
nonequilibrium for the electrons. In particular, the interaction between drifting 
plasmons and surface polar optical phonons leads to instability of the electron  
subsystem due to Vavilov–Cherenkov effect. We suggest that the hybrid system, a 
graphene on a polar substrate, is capable of using in amplifiers or generators of THz 
electromagnetic radiation. 
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1. Introduction 
As is well known [1], graphene shows a number of remarkable physical properties. In particular, 
the kinetic energy Ek of free carriers as a function of momentum module | | pp  is linear in a wide 

energy range [2]:  
=k FE v p ,     (1) 

where 810Fv  cm/s is the Fermi velocity (the signs ‘+’ and ‘–’ in Eq. (1) correspond to electrons 

and holes, respectively). This symmetry of energy bands allows considering the graphene as a bi-
polar semiconductor. To work only with electrons, one should have the concentration of electrons 
much greater than that of holes. This is can be achieved by doping the graphene. It can be doped 
chemically or by applying some positive electric voltage to a gate, which is generally placed under 
a substrate. In addition, one can use a so-called electrolytic gate [3] in order to achieve very high 
electron concentrations (up to 41014сm-2).  

The influence of substrate on the properties of electrons in graphene has been studied in the 
works [4–10], including the case of nonequilibrium electrons. However, optical properties and 
cooperative plasma oscillations in highly doped graphene, as well as surface polar optical phonons 
(SPOP) arising from a polar substrate have been studied only for the equilibrium electrons [11–
15]. In the present study, we calculate dielectric function of the system mentioned above for the 
case of nonequilibrium electrons. Basing on this dielectric function, we study oscillations of the 
coupled system. Although similar studies have been reported earlier [16, 17], they refer to materi-
als where free electrons have a parabolic energy spectrum.  
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2. Basic equation and model criteria 

At first, let us choose a coordinate system and consider an electronic subsystem. Let Oz  axis be 
perpendicular to the plane of graphene sheet. Then axes Ox  and Oy  would belong to the plane of 

graphene. The graphene sheet is situated on a polar substrate at = 0z . The electronic subsystem 
can be described by a kinetic equation for distribution function ( , , )F tr p  of electrons in highly 

doped graphene:  

=0 = { }F z
F F Fv e I F
t p

  
 

  
p E

r p
.    (2) 

Here = ( , )x yr  and = ( , )x yp pp  are respectively the coordinates and the momenta, e  is the 

electron charge ( 0e  ), t  the time, and { }I F  the collision integral. The total electric field 

0( , , ) = ( , , )sz t z tE r E E r  consists of an external stationary homogeneous driving electric field 

0E  and a self-consistent field ( , , )s z tE r  of electrons. The total field in Eq. (2) should be calcu-

lated in the plane of graphene, i.e. at 0z  .  
In the case of highly doped graphene, the electron concentration is high and the main mecha-

nism of collision corresponds to electron-electron collisions [5, 18, 19]. Then the stationary spa-
tially uniform solution of Eq. (2) is a shifted Fermi–Dirac distribution function:  

1
0

0 ( ) = exp 1F x

B

v p v p
f

k T
    

    
p ,   (3) 

where the drift velocity 0 0= ( ,0)vv  is directed along the Ox  axis. Here Bk  and T  are respec-

tively the Boltzmann constant and the electron temperature. The chemical potential   can be 

determined from the normalisation condition  

2
0 02 =

(2 )
s vg g d pf n
 


,     (4) 

where = 2sg  and = 2vg  imply respectively the spin and valley degenerations,   is the reduced 

Planck constant, and 0n  the equilibrium surface concentration of electrons. 

To describe the electron plasma oscillations, we will use a linear approximation 

0 1( , , ) = ( ) ( , , )F t f f tr p p r p , where 1( , , )f tr p  represents a small perturbation to a function 

0 ( )f p . We will neglect the collision integral in the linearised kinetic equation for 1( , , )f tr p :  

 01 1 1
0 =0= .F s z

ff f fv e e
t p

  
 

   
p E E

r p p
   (5) 

For convenience we will use the scalar potential ( , , )z t r  instead of the field ( , , )s z tE r , which 

are linked by a simple relation =s E . 

Since Eq. (5) does not contain the coordinates and the time explicitly, the quantities 

1( , , )f tr p  and ( , , )z t r  can be represented as 0
1 ,( , , ) = ( ) i i t if t f e 


  kr

kr p p  and 

0
,( , , ) = ( ) i i t iz t z e 

    kr
kr , where   and k  are the frequency and the wave vector of the 

perturbation, respectively. The infinitesimal term 0i   arises from the principle of causality. It 
gives the Landau rule to bypass the poles in the integrals (see below). The same rule applies if we 
add the infinitesimal collision integral 1/f   at    to the r. h. s. of the kinetic equation (5). 
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the infinitesimal collision integral 1/f   at    to the r. h. s. of the kinetic equation (5). 

Nevertheless, one should keep in mind that consideration of the case of a finite   value does not 
make sense, since such a collision integral would violate the charge conservation law.  

A neglect of the collision integral is valid if 
1p  ,     (6) 

where p  is the momentum relaxation time of electrons. Use of a classical kinetic equation for the 

electrons imposes the following restriction on the wave vector value:  

Fk k ,     (7) 

where 0=Fk n  is the absolute value of the equilibrium Fermi wave vector. If doping of the 

graphene is carried out by applying a positive voltage to the gate located under the substrate, our 

model would be valid if 1kd  , where d  is the substrate thickness, i.e. the distance between the 

gate and the graphene sheet.  

We will also neglect the term 1
0

f
e





E

p
 in Eq. (5). This is valid if the changes in the electron 

momentum occurring in the field 0E  over the time period of the wave are much smaller than the 

average electron momentum, and if the changes in the electron energy imposed by this field over 
the spatial period of the wave are much smaller than the average electron energy (i.e., the Fermi 
energy).  

As follows from Eqs. (3) and (4), the chemical potential decreases with increasing drift ve-
locity, so that we do not consider the drift velocity of electrons close to Fv . If the speeds typical 

for the electrons are much smaller than the speed of light, Eq. (5) should be solved together with 
the Poisson equation for the Fourier components of the potential , ( )z k  and the necessary 

boundary conditions, 
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.  (8) 

Here 0    and the dielectric permittivity ( )   involved in the last boundary condition is a 

function of frequency (see, e.g., [20]):  
2

0
2 2
( )

( ) = TO

TO TOi
  

  
   







 
,    (9) 

where 0  and   are respectively the static and high-frequency dielectric constants of the sub-

strate, TO  is the frequency of transverse optical phonons, and the parameter TO  describes the 

phonon damping ( TO TO  ). 

Eqs. (3)–(5) and Eqs. (8)–(9) compose a basic system for the problem under consideration.  
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3. Results and discussion 
Using the above system of equations, one can obtain the dielectric function for the interacting 
plasmons and substrate phonons: 
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0

1
( , ) = 1
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TO
e

TO
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P


     

 
         

 


KK

KP P
,   (10) 

where for convenience the following dimensionless variables are introduced: =
TO


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Here 01
1SO TO


 







 denotes the frequency of surface optical phonons [13]. Notice that the 

dielectric function given by Eq. (10) is anisotropic if the electron drift is present. This could lead to 
rotation of the light polarisation plane.  Also, if we put =SO TO   or 0 =  , we obtain the 

dielectric function for the pure plasma oscillations in highly doped graphene, because the width of 
the residual radiation band is zero in this case. 

It is well-known that the Landau collisionless damping is absent in highly doped graphene 
plasma whenever Fk k . This is because the pure plasmon branch does not get to the region 

where the imaginary part of the dielectric function is nonzero. As shown for the equilibrium case 
[12], the interaction of plasmons with the SPOP leads to splitting of the pure plasmon branch into 
two branches,   and  . The damping decrement   corresponding to   is equal to 

/ 2TO , since this branch passes through the region where the imaginary part of the integral ap-

pearing in Eq. (10) is zero. From the other hand, the branch   does pass through the region 

where the imaginary part of the integral in Eq. (10) is nonzero. In this region both the term TO  

and the imaginary part of the integral involved in Eq. (10) give contributions to the   parameter. 

Thus, the nature of damping of the cooperative plasma and the SPOP oscillations for the   

branch is the same as the nature of the Landau collisionless damping. As will be shown, the simi-
lar situation also occurs for the nonequilibrium case. However, starting from some values of the 
drift velocity and the K  parameter, the damping effect is replaced by growing oscillations that 
correspond to electrical instability of our system.  

When performing numerical calculations, we have chosen TlCl as a substrate material. This 
material [21, 22] has a very wide residual radiation band, since 0 37.2   and 5   at the he-

lium temperature. Moreover, we have 131.15 10TO   s 1  and 0.066TO   for TlCl. We take 

the electron concentration 13
0 = 10n сm 2  and the electron temperature = 200T K for our estima-

tions. For the parameters chosen as above, the dimensionless equilibrium Fermi wave vector is 

equal to = 48.7F F
F

TO

v kK


 . The chemical potentials for the cases of 0 = 0V  and 0 = 0.4V  are 

50  meV and 41.6  meV, so that we obtain = 2.9
Bk T
  and = 2.4

Bk T
 , respectively. For 
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simplicity, we put 0yK  . Further on, we will present the results for the values of parameters that 

satisfy the inequalities (6) and (7), and the other criteria of our model. 
 

 
Fig. 1. (a) Frequency branch ( )xK  at 0 = 0V . Dash line restricts the residual radiation band. Branch 

( )xK  is presented in the inset. (b) Decrement   as a function of xK . 

As seen from Fig. 1a, the frequency branch   passes close to = 1  and, due to a strong in-

teraction, this branch never reaches the value 0= 2.5    corresponding to SOw , even at 

=x FK K . Since the branch   crosses the line | | K  , the damping caused only by the phonon 

damping corresponds to this branch in the region > K  (i.e., = /2TO  ). Therefore the total 
damping caused by the phonon damping and the Landau damping mechanisms corresponds to this 
branch in the region | | K  . A cutting behaviour of ( )xK  can be explained by the fact that 
the imaginary part appearing in Eq. (10) has a point of discontinuity of the second kind at 
| |= K . 

One should also notice a very rapid growth of the   and   branches at small xK . Such 

behaviour of the frequency branches leads to high group velocity of the wave in the region of the 
rapid growth. As is well known, the group velocity is related to energy transfer. Under electric 
field applied, a large part of the energy is given to almost dispersionless SPOP, of which group 
velocity is very small. As a result, the heat is not rejecting from the graphene. In the case of cou-
pled vibrations of graphene plasmons and the SPOP, the group velocity of the waves correspond-
ing to these vibrations is significantly greater. Hence, these waves could provide heat rejection 
from the graphene.  

The both frequency branches for the nonequilibrium case (see Fig. 2) differ not very much 
from those shown in Fig. 1. From the other hand, the parameter   changes its sign, which corre-

sponds to electrical instability of the system. In the absence of phonon damping, the   sign re-

verses strictly at 0 xV K  , which corresponds to the Vavilov–Cherenkov effect. However, the 

total function   shifts by a half of the phonon damping parameter TO  if TO  remains nonzero 

(as in Fig. 2). It is worthwhile to notice that the effect of instability can be used for generating or 
amplifying the THz electromagnetic radiation.  

When the electron drift is present, the electron temperature can be significantly higher than 
the ambient temperature. Our analysis shows that the effect of instability can also occur in the case 
of significant heating, whenever one can create high enough electron concentrations.  
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Fig. 2. The same dependences as shown in Fig. 1 calculated at 0 = 0.4V . 

In conclusion, we have theoretically studied a hybrid system composed of a highly doped 
graphene and a polar substrate. We have found the THz response of the nonequilibrium electrons 
interacting with the SPOP. The response depends significantly on the electron drift velocity. In 
particular, the damping of oscillations of the system can give way to their growth, if the drift ve-
locity is large. We suggest that the hybrid system under consideration is capable of using for am-
plification or generation of the THz electromagnetic radiation.  
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Анотація. Розглянуто надвисокочастотний відгук системи дрейфуючих електронів сильно 
легованого графену та поверхневих оптичних фононів полярної підкладки. Для взаємодіючої 
системи розраховано діелектричну функцію, частоти та декремент/інкремент спільних 
коливань. Показано, що відгук системи суттєво залежить від ступеня нерівноважності 
електронів. Зокрема, взаємодія між плазмонами та поверхневими оптичними фононами 
приводить до дрейфової нестійкості, зумовленої ефектом Вавілова–Черенкова. Розглянуту 
систему можна використовувати для генерації або підсилення терагерцового 
електромагнітного випромінювання.  


