Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Pancharatnam’s phase induced by spin-orbit interaction in weakly guiding twisted elliptical fibres
Alexeyev C.N., Yavorsky M.A.

V.I. Vernadsky Tavrida National University, 4 Vernadsky Ave., 95007 Simferopol, Crimea, Ukraine

download full version

We derive the expressions for   modes of weakly guiding twisted elliptical fibres and the polarization corrections to the scalar propagation constant of these modes in the framework of Jones matrix formalism in the re?ectionless approximation. Using these results, we demonstrate that the topological Pancharatnam’s phase in the twisted elliptical fibre appears due to spin-orbit coupling in fibres and is absent in the scalar approximation.

Keywords: twisted fibre, Pancharatnam-Berry’s phase, spin-orbit interaction

PACS: 42.25.Bs, 42.81.Q, 42.25.Ja, 42.81.Dp
Ukr. J. Phys. Opt. 8 1-12   doi: 10.3116/16091833/8/1/1/2007
Received: 14.12.2006 
 

REFERENCES

1. Berry MV, 1984. Quantal phase factors accompanying adiabatic changes.  Proc. Roy. Soc. Lond. A392: 45-57.
2. Tomita A and Chiao RY, 1986. Observation of Berry's Topological Phase by Use of an Optical Fiber. Phys. Rev. Lett. 57: 937-940.
        doi:10.1103/PhysRevLett.57.937 http://dx.doi.org/10.1103/PhysRevLett.57.937
3. Chiao RY and Wu Yong-Shi, 1986. Manifestations of Berry's Topological Phase for the Photon. Phys. Rev. Lett. 57: 933-936.
        doi:10.1103/PhysRevLett.57.933 http://dx.doi.org/10.1103/PhysRevLett.57.933
4. Chen G, Wang Q, 1995. Local fields in single-mode helical fibres. Opt.Quantum Electron. 27: 1069-1074.
        doi:10.1007/BF00292136 http://dx.doi.org/10.1007/BF00292136
5. Berry MV, 1987. Interpreting the anholonomy of coiled light. Nature. 326: 277-278.
        doi:10.1038/326277a0 http://dx.doi.org/10.1038/326277a0
6. Alexeyev CN, Yavorsky MA, 2007. Berry's phase for optical vortices in coiled optical fibres. J.Opt.A: Pure Appl Opt. 9: 6-14.
        doi:10.1088/1464-4258/9/1/002 http://dx.doi.org/10.1088/1464-4258/9/1/002
7. Pancharatnam S, 1975. Collected works of S. Pancharatnam. Oxford: University Press.
8. Berry MV, 1987. The Adiabatic Phase and Pancharatnam's Phase for Polarized Light. J. Mod. Opt. 34: 1401-1407.
9. Jiao H, Wilkinson SR, Chiao RY, Nathel H, 1989. Two topological phases in optics by means of a nonplanar Mach-Zehnder interferometer. Phys. Rev. Ser. A. 39: 3475.
        doi:10.1103/PhysRevA.39.3475-3486 http://dx.doi.org/10.1103/PhysRevA.39.3475
10. Bhandari R, 1988. Observation of non-integrable geometric phase on the poincaré sphere.  Phys. Lett. Ser. A. 133: 1-3.
        doi:10.1016/0375-9601(88)90723-2 http://dx.doi.org/10.1016/0375-9601(88)90723-2
11. Simon R, Kimble HJ, Sudarshan ECG, 1988. Evolving Geometric Phase and Its Dynamical Manifestation as a Frequency Shift: An Optical Experiment. Phys. Rev. Lett. 61: 19-22.
        doi:10.1103/PhysRevLett.61.19 http://dx.doi.org/10.1103/PhysRevLett.61.19
Ernesto De Vito, Alberto Levrero, 1994. Pancharatnam's Phase for Polarized Light Pancharatnam's Phase for Polarized Light. J. Mod. Opt 41: 2233-2238.
Gantsog T, Tanas R, 1991. Discrete superpositions of coherent states and phase properties of elliptically polarized light propagating in a Kerr medium. Quant. Semiclass. Opt. 3: 33-48.
        doi:10.1088/0954-8998/3/1/004 http://dx.doi.org/10.1088/0954-8998/3/1/004
12. Garrison JC, Chiao RY, 1988. Geometrical Phases from Global Gauge Invariance of Nonlinear Classical Field Theories. Phys. Rev. Lett. 60: 165-168.
        doi:10.1103/PhysRevLett.60.165 http://dx.doi.org/10.1103/PhysRevLett.60.165
13. Sasaki Y, Hosaka T, Noda J, 1984. Polarization-maintaining optical fibers used for a laser diode redundancy system in a submarine optical repeater. J. Lightwave Technol. LT2: 816-823.
14. Copp VI, Genack AZ, 2003. Double-helix chiral fibers. Opt.Lett. 28: 1876-1878.
15. Oh S, Lee KR, Paek UC, Chung Y, 2003. Fabrication of helical long-period fiber gratings by use of a CO2 laser. Opt.Lett. 29: 1464-1466.
        doi:10.1364/OL.29.001464 http://dx.doi.org/10.1364/OL.29.001464
16. Kapron FP, Borrelli NF, Keck DB, 1972. Birefringence in dielectric optical waveguides. IEEE J. Quant. Electr. 8: 222-225.
        doi:10.1109/JQE.1972.1076925 http://dx.doi.org/10.1109/JQE.1972.1076925
17. Ulrich R, Simon A, 1979. Polarization optics of twisted single-moded fibers. Appl.Opt. 18: 2241-2251.
18. Fujii Y, Sano K, 1980. Polarization coupling in twisted elliptical optical fiberAppl.Opt. 19: 2602-2605.
19. Barlow AJ, Ramskov-Hansen JJ, Payne DN, 1981. Birefringence and polarization mode-dispersion in spun single-mode fibers. Appl.Opt. 20: 2962-2967.
20. Galtarossa A, Griggio P, Palmieri L, Pizzinat A, 2003. Polarization mode dispersion properties of constantly spun randomly birefringent fibers. Opt.Lett. 28: 1639-1641.
21. Pizzinat A, Marks BS, Palmieri L, Menyuk CR, Galtarossa A, 2003. Polarization mode dispersion of spun fibers with randomly varying birefringence.  Opt.Lett. 28: 390-392.
22. Malykin GB, Pozdnyakova VI, 2000. Mathematical modeling of random coupling between polarization modes in single-mode optical fibers: VI. Evolution in the degree of polarization of nonmonochromatic radiation traveling in a twisted optical waveguide. Opt. Spectrosc. 89: 273-281.
        doi:10.1134/1.1307447 http://dx.doi.org/10.1134/1.1307447
23. Malykin GB, Pozdnyakova VI, Shereshevski IA, 2000. Coupling between elliptic screw polarization modes in single-mode optical waveguides with linear birefringence and regular twist of anisotropy axes in the presence of random axis twist. Opt. Spectrosc. 88: 427-440.
        doi:10.1134/1.626813 http://dx.doi.org/10.1134/1.626813
24. Chen X, Hunt TL, Li MJ, Nolan DA, 2003. Properties of polarization evolution in spun fibers. Opt. Lett. 28: 2028-2030.
25. Bouquet G, de Montmorillon L-A, Nouchi P, 2004. Analytical solution of polarization mode dispersion for triangular spun fibers. Opt. Lett. 29: 2118-2120.
        doi:10.1364/OL.29.002118 http://dx.doi.org/10.1364/OL.29.002118
26. Li MJ, Chen X, Nolan DA, 2004. Effects of residual stress on polarization mode dispersion of fibers made with different types of spinning. Opt.Lett. 29: 448-450.
        doi:10.1364/OL.29.000448 http://dx.doi.org/10.1364/OL.29.000448
27. Alexeyev CN, Yavorsky MA, 2004. Optical vortices and the higher order modes of twisted strongly elliptical optical fibres. J. Opt. A: Pure Appl. Opt. 6: 824-832.
        doi:10.1088/1464-4258/6/9/002 http://dx.doi.org/10.1088/1464-4258/6/9/002
28. Yariv A and Yeh P, 1984. Optical waves in crystals: propagation and control of laser radiation. Wiley, New York.
29. Snyder AW, Love JD, 1985. Optical waveguide theory. Chapman and Hall, London, New York.
30. Alekseev CN, Volyar AV, and Fadeeva TA, 2002. Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers.  Opt. Spectrosc. 93: 588-597.
        doi:10.1134/1.1517085 http://dx.doi.org/10.1134/1.1517085
31. Davydov AS, 1976. Quantum Mechanics. Pergamon, Oxford.
32. Linares J, Nistal MC, Baldomir D, 1994. Beam modes in graded-index media and topological phases. Appl. Opt. 33: 4293-4299.
33. Volyar AV, Zhilaitis VZ, and Shvedov VG, 1999. Optical Eddies in Small-Mode Fibers: II. The Spin–Orbit Interaction. Opt. Spectrosc. 86: 593-598.

(c) Ukrainian Journal of Physical Optics