Home
page
Other articles
in this issue |
Pancharatnam’s phase
induced by spin-orbit interaction in weakly guiding twisted elliptical
fibres
Alexeyev C.N., Yavorsky M.A.
V.I. Vernadsky Tavrida National University, 4 Vernadsky
Ave., 95007 Simferopol, Crimea, Ukraine
download full version
We derive the expressions for modes
of weakly guiding twisted elliptical fibres and the polarization corrections
to the scalar propagation constant of these modes in the framework of Jones
matrix formalism in the re?ectionless approximation. Using these results,
we demonstrate that the topological Pancharatnam’s phase in the twisted
elliptical fibre appears due to spin-orbit coupling in fibres and is absent
in the scalar approximation.
Keywords: twisted fibre, Pancharatnam-Berry’s
phase, spin-orbit interaction
PACS: 42.25.Bs, 42.81.Q, 42.25.Ja, 42.81.Dp
Ukr. J. Phys. Opt.
8 1-12 doi: 10.3116/16091833/8/1/1/2007
Received: 14.12.2006
|
|
REFERENCES
1. Berry MV, 1984. Quantal phase factors accompanying
adiabatic changes. Proc. Roy. Soc. Lond. A392: 45-57.
2. Tomita A and Chiao RY, 1986. Observation of
Berry's Topological Phase by Use of an Optical Fiber. Phys. Rev. Lett.
57: 937-940.
doi:10.1103/PhysRevLett.57.937
http://dx.doi.org/10.1103/PhysRevLett.57.937
3. Chiao RY and Wu Yong-Shi, 1986. Manifestations
of Berry's Topological Phase for the Photon. Phys. Rev. Lett. 57: 933-936.
doi:10.1103/PhysRevLett.57.933
http://dx.doi.org/10.1103/PhysRevLett.57.933
4. Chen G, Wang Q, 1995. Local fields in single-mode
helical fibres. Opt.Quantum Electron. 27: 1069-1074.
doi:10.1007/BF00292136
http://dx.doi.org/10.1007/BF00292136
5. Berry MV, 1987. Interpreting the anholonomy
of coiled light. Nature. 326: 277-278.
doi:10.1038/326277a0
http://dx.doi.org/10.1038/326277a0
6. Alexeyev CN, Yavorsky MA, 2007. Berry's phase
for optical vortices in coiled optical fibres. J.Opt.A: Pure Appl Opt.
9: 6-14.
doi:10.1088/1464-4258/9/1/002
http://dx.doi.org/10.1088/1464-4258/9/1/002
7. Pancharatnam S, 1975. Collected works of S.
Pancharatnam. Oxford: University Press.
8. Berry MV, 1987. The Adiabatic Phase and Pancharatnam's
Phase for Polarized Light. J. Mod. Opt. 34: 1401-1407.
9. Jiao H, Wilkinson SR, Chiao RY, Nathel H,
1989. Two topological phases in optics by means of a nonplanar Mach-Zehnder
interferometer. Phys. Rev. Ser. A. 39: 3475.
doi:10.1103/PhysRevA.39.3475-3486
http://dx.doi.org/10.1103/PhysRevA.39.3475
10. Bhandari R, 1988. Observation of non-integrable
geometric phase on the poincaré sphere. Phys. Lett. Ser. A.
133: 1-3.
doi:10.1016/0375-9601(88)90723-2
http://dx.doi.org/10.1016/0375-9601(88)90723-2
11. Simon R, Kimble HJ, Sudarshan ECG, 1988.
Evolving Geometric Phase and Its Dynamical Manifestation as a Frequency
Shift: An Optical Experiment. Phys. Rev. Lett. 61: 19-22.
doi:10.1103/PhysRevLett.61.19
http://dx.doi.org/10.1103/PhysRevLett.61.19
Ernesto De Vito, Alberto Levrero, 1994. Pancharatnam's
Phase for Polarized Light Pancharatnam's Phase for Polarized Light. J.
Mod. Opt 41: 2233-2238.
Gantsog T, Tanas R, 1991. Discrete superpositions
of coherent states and phase properties of elliptically polarized light
propagating in a Kerr medium. Quant. Semiclass. Opt. 3: 33-48.
doi:10.1088/0954-8998/3/1/004
http://dx.doi.org/10.1088/0954-8998/3/1/004
12. Garrison JC, Chiao RY, 1988. Geometrical
Phases from Global Gauge Invariance of Nonlinear Classical Field Theories.
Phys. Rev. Lett. 60: 165-168.
doi:10.1103/PhysRevLett.60.165
http://dx.doi.org/10.1103/PhysRevLett.60.165
13. Sasaki Y, Hosaka T, Noda J, 1984. Polarization-maintaining
optical fibers used for a laser diode redundancy system in a submarine
optical repeater. J. Lightwave Technol. LT2: 816-823.
14. Copp VI, Genack AZ, 2003. Double-helix chiral
fibers. Opt.Lett. 28: 1876-1878.
15. Oh S, Lee KR, Paek UC, Chung Y, 2003. Fabrication
of helical long-period fiber gratings by use of a CO2 laser. Opt.Lett.
29: 1464-1466.
doi:10.1364/OL.29.001464
http://dx.doi.org/10.1364/OL.29.001464
16. Kapron FP, Borrelli NF, Keck DB, 1972. Birefringence
in dielectric optical waveguides. IEEE J. Quant. Electr. 8: 222-225.
doi:10.1109/JQE.1972.1076925
http://dx.doi.org/10.1109/JQE.1972.1076925
17. Ulrich R, Simon A, 1979. Polarization optics
of twisted single-moded fibers. Appl.Opt. 18: 2241-2251.
18. Fujii Y, Sano K, 1980. Polarization coupling
in twisted elliptical optical fiberAppl.Opt. 19: 2602-2605.
19. Barlow AJ, Ramskov-Hansen JJ, Payne DN, 1981.
Birefringence and polarization mode-dispersion in spun single-mode fibers.
Appl.Opt. 20: 2962-2967.
20. Galtarossa A, Griggio P, Palmieri L, Pizzinat
A, 2003. Polarization mode dispersion properties of constantly spun randomly
birefringent fibers. Opt.Lett. 28: 1639-1641.
21. Pizzinat A, Marks BS, Palmieri L, Menyuk
CR, Galtarossa A, 2003. Polarization mode dispersion of spun fibers with
randomly varying birefringence. Opt.Lett. 28: 390-392.
22. Malykin GB, Pozdnyakova VI, 2000. Mathematical
modeling of random coupling between polarization modes in single-mode optical
fibers: VI. Evolution in the degree of polarization of nonmonochromatic
radiation traveling in a twisted optical waveguide. Opt. Spectrosc. 89:
273-281.
doi:10.1134/1.1307447
http://dx.doi.org/10.1134/1.1307447
23. Malykin GB, Pozdnyakova VI, Shereshevski
IA, 2000. Coupling between elliptic screw polarization modes in single-mode
optical waveguides with linear birefringence and regular twist of anisotropy
axes in the presence of random axis twist. Opt. Spectrosc. 88: 427-440.
doi:10.1134/1.626813
http://dx.doi.org/10.1134/1.626813
24. Chen X, Hunt TL, Li MJ, Nolan DA, 2003. Properties
of polarization evolution in spun fibers. Opt. Lett. 28: 2028-2030.
25. Bouquet G, de Montmorillon L-A, Nouchi P,
2004. Analytical solution of polarization mode dispersion for triangular
spun fibers. Opt. Lett. 29: 2118-2120.
doi:10.1364/OL.29.002118
http://dx.doi.org/10.1364/OL.29.002118
26. Li MJ, Chen X, Nolan DA, 2004. Effects of
residual stress on polarization mode dispersion of fibers made with different
types of spinning. Opt.Lett. 29: 448-450.
doi:10.1364/OL.29.000448
http://dx.doi.org/10.1364/OL.29.000448
27. Alexeyev CN, Yavorsky MA, 2004. Optical vortices
and the higher order modes of twisted strongly elliptical optical fibres.
J. Opt. A: Pure Appl. Opt. 6: 824-832.
doi:10.1088/1464-4258/6/9/002
http://dx.doi.org/10.1088/1464-4258/6/9/002
28. Yariv A and Yeh P, 1984. Optical waves in
crystals: propagation and control of laser radiation. Wiley, New York.
29. Snyder AW, Love JD, 1985. Optical waveguide
theory. Chapman and Hall, London, New York.
30. Alekseev CN, Volyar AV, and Fadeeva TA, 2002.
Spin-orbit interaction and evolution of optical eddies in perturbed weakly
directing optical fibers Spin-orbit interaction and evolution of optical
eddies in perturbed weakly directing optical fibers. Opt. Spectrosc.
93: 588-597.
doi:10.1134/1.1517085
http://dx.doi.org/10.1134/1.1517085
31. Davydov AS, 1976. Quantum Mechanics. Pergamon,
Oxford.
32. Linares J, Nistal MC, Baldomir D, 1994. Beam
modes in graded-index media and topological phases. Appl. Opt. 33: 4293-4299.
33. Volyar AV, Zhilaitis VZ, and Shvedov VG,
1999. Optical Eddies in Small-Mode Fibers: II. The Spin–Orbit Interaction.
Opt. Spectrosc. 86: 593-598.
(c) Ukrainian Journal
of Physical Optics |