Ukrainian Journal of Physical Optics 


Number  3, Volume 5,  2004

Home page
 
 

Other articles 
in this issue


Multiple Reflections in Crystals: Natural and Faraday Optical Activity 
Kushnir O.S.

Electronics Department, Lviv National University, Lviv-54, P. O. Box 3154, 79054 Lviv, Ukraine

download full version

A previous analysis of the multiple reflections (MR) of light in crystals is extended to description of particular cases of natural and magnetooptic Faraday optical activity. The differences in manifestations of the MR in the latter effects are discussed and compared with the experimental results. In particular, the MR do not affect the optical rotation related to the natural gyration in case of a rigorously normal light incid-ence. The modifications of the transmittance fit-function of the known polarimetric HAUP technique imposed by the MR are specified. It is shown that the MR in crystals should produce a kind of spurious dichroism.

Key words: crystal optics, multiple reflections, Jones matrices, birefringence, gyration, dich-roism, polarimetry, HAUP.
PACS: 78.20.Ci, 78.20.Fm, 42.25.Ja, 07.60.Fs

doi 10.3116/16091833/5/3/87/2004

1. Kushnir OS, 2003. J. Opt. A: Pure & Appl. Opt. 5: 478.
        doi:10.1088/1464-4258/5/5/308  http://dx.doi.org/10.1088/1464-4258/5/5/308
2. Herreros-Cedrés J, Hernández-Rodríguez C, Guerrero-Lemus R, J. Opt. A: Pure Appl. & Opt.
3. Simon J, Weber J, Unruh H-G, 1997. J. Phys. D: Appl. Phys. 30: 676.
        doi:10.1088/0022-3727/30/4/024  http://dx.doi.org/10.1088/0022-3727/30/4/024
4. Gomes P, Hernandez C, 1998. J. Opt. Soc. Amer. B 15: 1147.
5. Folcia CL, Ortega J, Etxebarria J, 1999. J. Phys. D: Appl. Phys. 32: 2266.
        doi:10.1088/0022-3727/32/17/318  http://dx.doi.org/10.1088/0022-3727/32/17/318
6. Hernández-Rodríguez C, Gómez-Garrido P, 2000. J. Phys. D: Appl. Phys. 33: 2985.
        doi:10.1088/0022-3727/33/22/318  http://dx.doi.org/10.1088/0022-3727/33/22/318
7. Moxon JRL, Renshaw AM, 1990. J. Phys.: Condens. Matter 2: 6807
        doi:10.1088/0953-8984/2/32/012  http://dx.doi.org/10.1088/0953-8984/2/32/012
8. Simon J, Weber J, Unruh H-G, 1996. Ferroelectrics 183: 161.
9. Landau LD, Lifshitz EM, 1960. Electrodynamics of continuous media (New York, Pergamon Press).
10. Yariv A, Yeh P, 1984. Optical waves in crystals (New York, Wiley).
11. Vlokh OG, 1984. Spatial dispersion phenomena in parametric crystal optics (Lviv, Vyshcha Shkola).
12. Hornreich RM, Shtrikman S, 1968. Phys. Rev. 171: 1065.
        doi:10.1103/PhysRev.171.1065  http://dx.doi.org/10.1103/PhysRev.171.1065
13. Pisarev RV, 1996. Ferroelectrics 183: 39.
14. Melle H, 1986. Optik 72: 157.
15. de Lang H, 1967. Philips Res. Rep. 8: 1.
16. Rosenberg R, Rubinstein CB, Herriott DR, 1964. Appl. Opt. 3: 1079.
17. Tronko VD, Dovgalenko GE, 1973. Opt. Spektrosk. 34: 1157.
18. Holmes DA, 1964. J. Opt. Soc. Amer. 54: 1115. D. A. Holmes, "Exact Theory of Retardation Plates," J. Opt. Soc. Am. 54, 1115- (1964)http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-9-1115
19. Azzam RMA, Bashara NM, 1988. Ellipsometry and Polarized Light (Amsterdam, North-Holland).
20. Kushnir OS, Bevz OA, Polovinko II, Sveleba SA, 2003. Phys. Status Solidi b 238: 92.
21. Herreros-Cedrés J, Hernández-Rodríguez C, Guerrero-Lemus R, 2002. J. Appl. Cryst. 35: 228.
        doi:10.1107/S0021889802000778  http://dx.doi.org/10.1107/S0021889802000778
22. Bachheimer JP, 1986. J. Phys. C: Solid State Phys. 19: 5509.
        doi:10.1088/0022-3719/19/27/025  http://dx.doi.org/10.1088/0022-3719/19/27/025
23. Bosch G, Jahn IR, Prandl W, Verhein M, 1986. Physica B 142: 320.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions