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Abstract

A previous analysis of the multiple reflections (MR) of light in crystals is extended to
description of particular cases of natural and magnetooptic Faraday optical activity. The
differences in manifestations of the MR in the latter effects are discussed and compared
with the experimental results. In particular, the MR do not affect the optical rotation related
to the natural gyration in case of a rigorously normal light incidence. The modifications of
the transmittance fit-function of the known polarimetric HAUP technique imposed by the
MR are specified. It is shown that the MR in crystals should produce a kind of spurious
dichroism.
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Introduction

In a recent paper [1], we have studied, by means
of the Jones calculus technique, the effect of
multiple (MR) on the optical
transmittance and polarization characteristics of
light in weakly anisotropic absorbing optically

reflections

uniaxial crystals. However, Herreros-Cedrés et
al [2] have considered the particular case of light
propagation along the optic axis and on this
basis objected to the reflection matrix used in
[1] and so our results concerned with the light
polarization. Furthermore, some important
recent results have gone unnoticed by us,
dealing with the measurements and inter-
pretation of the MR effect within the well-
known high-accuracy universal polarimeter
(HAUP) technique [3-6], the subject that has
been also addressed in the study [1]. It has

turned out that different authors use for decades

the transmittance fit-functions J pg, (see [1] for

the detailed explanations of the notation used
hereafter) of this widely recognized technique,
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in which the corrections for MR are sometimes
essentially different (see [1,3-8]). All these
points clearly need a close consideration.

Derivation of the Jones matrix and
analysis of the results

The authors [2] suggest a general relation for the
Jones matrix (JM) M of crystals in the presence
of MR,

M :t'M()Z(rM(r)evrMo)mta (1)
m=0
where M is the single-pass JM, M;" the JM

associated with the reversed light propagation
direction, r the amplitude reflection matrix and

t, t' the amplitude transmission matrices
referred to the entrance and exit faces of a
crystal plate (the standard geometry is

represented in Fig. 1). When combined with the
appropriate JM M, formula (1) generalizes
in 1],

M{” =M, is in fact taken. Since we analyse

the corresponding relation where
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Fig. 1. Schematic representation of MR in an
optically uniaxial crystal plate (see [1]). O.A,,
the optical axis; x, y, z, the principal axes of the
optical indicatrix ellipsoid. The incidence angle i
is taken non-zero only to visualize the multiple
beams. The small difference between the
refraction angles for ordinary and extraordinary
beams is not shown.
the most general case of optical anisotropy for
both linearly and circularly polarized waves, the
two types of optical gyration effects are to be
distinguished further on: a natural optical ac-
tivity (NA) associated with the dielectric per-

mittivity components & linear in the wave vec-

tor q and a magnetooptic Faraday optical activ-

ity (FA), for which the ¢;’s are dependent on

the (external or internal) magnetic field (see,
e.g., [9,10]).

When the light passes through the crystal in
the opposite direction (q — —q ), the mentioned

terms in &; (and so the corresponding complex

circular birefringence An. +iAx ) change their
signs in case of the NA and remain invariant in
case of the FA (see, e.g., [11]). On the basis of
the relations between the dielectric tensor and
the JM, one infers that the same holds true of
those parts of components of the JM that include
the odd functions of An, +iAx. As a result
of such the symmetry difference, the NA and FA
would behave quite differently with respect to
the MR. The two examples cited in [2] for the
(m=1) MR beam correspond
respectively to the FA and the NA. In other

first-order

words, it is necessary to put My’z, = M, and
My (Ane +idk e, k) =My (—Ane —iMk e —k)

where k is the normal wave ellipticity angle.
Still more intricate situations may happen when
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finding the M My", e.g., for the crystals
possessing a non-reciprocal gyrotropic linear
birefringence An;” [11-13] added to the usual
linear birefringence An,; . Again, we should put
Mg (Any") =M (=An]") .

As follows from the said above, the method

M =(é ?1)\/[0((1, ?1) [2] for calculating the

reversed JM represents an artificial attempt to
solve the problem using purely geometrical
means within the Jones formalism, rather than
real physical arguments. Nevertheless, it
succeeds by chance in a particular case of NA
when being combined with the incorrect
reflection matrix (see below). However, the

method fails whenever the JM M from [1] is
written in reference systems that do not coincide
with the principal (crystallophysical) one
(M,'=R(-6)M R(9), with R(O) being the
rotation matrix) |. Then the terms An, +iAx,

and An. +iAx. are “mixed” in all of the

M

'OJ.]. components, while the method [2]

prescribes simply to change signs of the off-

(M'rev__M

diagonal of =

'
components 0,ij *

i# j)* It fails also in cases of the FA or the

non-reciprocal birefringence.

Let us now touch upon the reflection matrix
used in the calculations. Its meaning consists in
nothing but defining the amplitude reflectivities
and the phase relations of the incident and
reflected waves. The analysis of the Fresnel
formulae under the conditions specified in [1]

! By the way, one must work in such the reference
systems, e.g., in case of the light propagation along
the optic axes in biaxial crystals.

ZContrary to the view [2], the relation
M, =—M,,,does not represent a general

property of JMs describing anisotropic crystals. It
gets broken in an arbitrary reference system

(0 #0,90%), even in the simplest case of transparent
purely linearly birefringent crystal (see formulae (2)—

(4) in [1]).
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(first of all, the normal light incidence (i=0)
and the weak optical anisotropy) leads to the M
r~rl (I being the identity matrix) and the
authors [2] themselves agree with the arguments
[1]. It is quite another matter that the J]M M [1]
does not describe the NA (see [2]). This
originates from the relation My =M, [1]
describing the FA and has nothing to do with the
matrix r. It is easy to prove (see [2] and sub-
section 2.1 in [1]) that the relation (1) suggested
in [2], combined with our r and the general tech-
nique for calculating M presented here, give

the correct results for both the NA and FA cases.
As mentioned above (see also [2]), the

simultaneous use of the algorithms rzr(é ?1)

and My" =M, for the case of NA in the work

To our opinion, the method [14] has represented
merely a practical means for deriving the JM,
without being involved into lengthy discussions
of the reversibility properties and physical
justification of the r form.

Thus, the results [1] for the circular

birefringence An. and dichroism Ax. cor-

respond to the FA and the magnetic circular
dichroism, which have been dealt with in the
studies [15-17] appealed to in [1]. Nevertheless,
most of those results are universal and valid also
for the case of NA. Below, we shall specially
mention all the exceptions that are “sensitive” to
the reversal behaviour of An. and Ax.

First, the JM of crystals with the NA
affected by the MR, written in the principal
reference system, is as follows (cf. with [1]):

[14] (further reproduced in [4-6]) has also l‘ed to M, = Fy,m = FNA(mu m12]’ ?)
the correct JM, although both algorithms My My
separately should be considered as inadequate. where
F, - | (1= R)e'®d/2 |
1-2Re?# ™% [cos? (A/2) — cosdksin>(A/2)] + R?e¢ 2
my; = (1—Re**™* ) cos(A/2) —i(1+ Re* "~ ) cos 2k sin(A / 2), 3)

my, =—my =—(1- Re* ) sin 2k sin(A / 2),

My, = (1—-Re* ™Y cos(A/2) +i(1+ Re* ") cos 2k sin(A/2)

Here d denotes the thickness of the crystal
plate, @ the “isotropic” phase shift upon a single
pass through the plate, o the mean absorption

coefficient, A the total (complex) “phase
retardation” defined by the superposition
principle in crystal optics

(A=Q7d | A (An, + Ak, ) +(Ang + Ak )

with A being the light wavelength in vacuum),
and R=r>. Comparing with formulae (8) in
[1], the sign of the R term in m,, and m,, is

opposite, while for the “isotropic” pre-factor we
have Fy,=Fp, only when the circular

anisotropy is absent (k=0).

Analysis of the results

Unlike the results [1], the JM (2) reduces to the
matrix obtained by Melle [14] for transparent
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crystals with the NA (see formulae (13) from
[14]) and, when ignoring the pre-factor F, to the
matrix [6] for the propagation direction along
the optic axis (k==x7/4). On the other hand,
the JM M, derived in [4] for the experimental
HAUP geometry (a=Ax;, =Ax. =0, k<<1;
the factor F' dropped, i.e., F' =1) differs from (3)
by replacement of Rexp(2ip) with the “scalar
reflection parameter” Rcos2¢ [7]. Inspection of
the calculations [4] shows that all the terms
iRsin2¢ are discarded without any reasoning
(cf. formulae (27)—(30) and (31)—(34) from [4]).
There is a sharp physical distinction
between our M,,, M, matrices and the JM
[4]. It is well known that the MR in transparent
isotropic material (for much familiarity, placed
into Fabri-Perot resonator) produce an “apparent
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absorption” «,, #0 (in reality, a destructive

interference at certain wavelengths, thicknesses,
refractive indices n» and R). For anisotropic
crystal, the transmittances of the Fabri-Perot
etalon would be obviously different for the
ordinary and extraordinary rays, due to the

inequality n, #n,. We arrive naturally at an

idea of “spurious dichroism” originated from the
MR (see the parameter o, in [1]). Though

without coming to terms, the effect has been in
fact described by Holmes [18] in frame of the
exact electromagnetic theory for transparent
linearly birefringent crystals (see also the
conclusions [7] about similar actions of the MR
and the

linear dichroism on the light

i($\/1 +2Re*77% cosdk + R?e* 2% _ cosdk)

éNA _
el2 — i .
b (1-2Re** ) sin 4k

transmittance within the HAUP). The fact of
availability of apparent absorption and
dichroism due to the MR must be reflected in

violation of a set of sufficient conditions

my, =m,,, my, =-m, and detm=1 for
unitarity of the corresponding JM. Both the
results [14] and the R-dependent terms in
formulae (3) testify that. Surprisingly, the JM
[4] is unitary and so disagrees with the
possibility for differential transmittances of the
normal waves.

Similarly to [1], let us analyse the matrix
(2). The complex amplitude ratios for the

normal waves &, , and the eigenvalues V,, ,

may be written as

, “

V)5 = FI(1- Re** ) cos(A/2) F i1+ 2R cos dk + R2e49724 sin(A/2)]

Unlike the FA [1], the MR affect the
elliptical polarization of normal waves in the
general case of k#0,t£7/4, and the waves
become slightly non-orthogonal (§e,§:2 #z-1)
due to the R terms. The maximal difference
between 7,4 and V,[3 [1] occurs for the optic
axis direction, when
V)4 = F[1- Rexp(2ip — ad)]exp(FiA/2).  Here
we do not write out a cumbersome relation for
the apparent dichroism parameter &, e]}ff’ (in
general, it is defined as & =Q2md/A)Ak,),
which is zero for the optic axis, exactly equal to
55;’ [1] if £ =0 and very close to the latter in a
practical case of k <<1. Simplifying J,, under

the conditions k,R <<1 (see also formula (10)
from [1]), we get
Oy ~2Rsin2psinA. (5)
On the other hand, the
J=EyEig YN E s/ Eiy )
formulae (14) and (16) in [18], which defines

parameter

included in
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the ratio of amplitude transmittances for the
normal waves linearly polarized along the axes x
and y, means in fact the same ‘“apparent
dichroism” ( f*~ 6,4 ). In the weak optical aniso-

tropy approximation, the relations [18] for f
agree excellently with (5), as well as the
formulae (30) and (34) from [1] for the
experimental parameters used to detect the
dichroic consequences of the MR.

It is interesting to compare manifestations
of the MR in the conditions of maximal
difference between the NA and FA, i.e. for the
light propagation direction exactly along the
optic axis (k=zx/4). Taking a=0 for
simplicity, we obtain

(1-R)(1- Re*?)e"?
1-2Re* cos A+ R?e* ™
1+ Re*

_ReZiga

FA —

cos(A/2) sin(A/2) |» (0)

-

1+ Re**

[ Ro™? sin(A/2) cos(A/2)
—Re

M NA

_(1=R)e” (COS(A/Z) —sin(A/2) D

1—Re¥ | sin(A/2) cos(A/2)
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Choosing the optimum absolute single-pass
phase shift ¢ of the wave (¢ =7p, p being
integer), one can attain “amplification” of the
single-pass optical rotation ¢'” (#” =A/2)
for the FA [16], as a result of the corresponding
reversal behaviour. According to (6), the

“amplification factor” Q=¢/¢” is equal to

O~(1+R)/(1-R), when ¢ <<1. On the
contrary, the anisotropic part m of the JM (7) for
the NA does not contain any MR terms. Since it
is well-known (see, e.g., [19]) that the polariz-
ation characteristics of the light emergent from
crystal are affected by the JM m only, one
comes to the conclusion about a complete
absence of polarization influence of the MR.
Then the formulae (18) and (19) of subsection
2.2.3 in [1] should be replaced with

p=x-0=¢" =, -0=A/2,
sin2¢ =sin2¢” = tanh §
where A=2md/A)An., 6 =Q2nd/A)Ak., Ois

)

the incident polarization azimuth, ', y and

e©

, € the emergent polarization azimuths and
ellipticities, respectively, for the single and
multiple pass through the crystal [1]. The result
(8) agrees with both the theoretical and
experimental findings by Melle [14] for the case
of normal light beam incidence. In other words,
under the condition of i=0 the MR do not
influence the light polarization for the light
propagating along the optic axis and the
corresponding NA  characteristics. In this
respect, formula (33) for the ¢ parameter in [6],
including the MR effect for i =0, represents a
clear inaccuracy, though the MR does affect the

light transmittance under the given conditions.

MR in the HAUP-type experiments

Now we proceed to analysis of crystal optical
parameters measured with the HAUP-type
techniques for transparent materials with the NA
(see subsection 2.2.4 in [1]). The azimuth y and
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the ellipticity ¢ of the emergent light under the
HAUP conditions are expressed in the form

y=A60—-Bp+5Y +
k[sinA—2R(1—cosA)sin(2¢ + A), 9
e=BO++A4p+ e+ > O

+k(1—cosA)[1+2Rcos(2p + A)]]

where A =(2md/A)An; +Anl. , p, Y and S

are the instrumental imperfection parameters
(see, e.g., [1,7]) and the standard functions A
and B are unaltered when compare to the case of
FA  (A=cosA—-2Rsin(2¢ + A)sinA and
B=[1+2Rcos(2p + A)]sin A [1D. Then
formula (36) from [1] for =0 changes to the
form  y =k[sinA—2R(1—cosA)sin(2¢ + A)],

although the “theoretical” y(A) oscillation

amplitude A, (A4, =2kR) and the conclusions

of subsection 3.5 [1] remain valid. The k-
dependent terms in the characteristic azimuth 6,

and ellipticity &, (see formulae (22) in [1])

would modify accordingly.

The most important, the linear
birefringence dominates in the experimental
HAUP geometry and so the differences between
the manifestations of the MR in the NA and FA

become insignificant. As a result, the

coefficients C,;, C,, and C;; of the HAUP
fit-function J 5, = YC@' [1,7] remain the same
for both the NA and FA, i.e., we have again (see
[1D

¢;3 =cos2¢(l+2cosA) -1,

€y, =sin(2p + A)cot(A/2) -

—2sin*(p—-A/2),
Cy = —2sin’(p—A/2)

(10)

if the representation CUZC;-O)(I-FZCU-R) is

used, with CIS-O) being the coefficients in the

absence of MR. Moreover, it follows from
analysis of the data [3] that the assumption [1]

about the re-definition of the quantity Cj,;
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(C;, =1), which depends upon the pre-factor F

and is common for the all C ;j components, has

indeed been right. This gives the quite
equivalently expressed coefficients
¢ =cos2pcos(2p + A), ¢y =0 and

¢y, =sin(2¢p + A)cot(A/2), in a perfect con-
sonance with the results [3]. Since the authors
[5] have earlier checked out a practical identity

of their C ;s found in the approximation of the

first-order MR (m=1) and those of the work
[3], we infer that formulae (10) are well
coordinated with the fit-function [3,5,8] and
represent the correct solution of the problem for
the MR effect’®. In particular, we obtain the
quantity that characterises the MR (or the
relevant “effective dichroism’) the simplest way

(see (5) and formula (30) from [1]):
(Cp —C3)/(2C5)) = (Cy, = Cy3)/ 2= (an
=2Rsin2@psin A '

In consonance with the results [3] (section
5) and [5] (subsection 4.3) and similar to the
linear dichroism effect [7], the MR “decouple”

the basic functions Y&' and @'* of the
decomposition Jpg, (e, Cy #C5 [1]).
However, the coefficients

13 = Cyy =2¢082¢c0s> (A/2) from  [4,6]
correlate with neither the results [1,3,5,8] nor

the earliest data c¢;; =c,, =cos2¢ [7]. Basing

on the said above, they should be most probably
regarded as invalid. It is also worth noticing that
appealing to agreement with the results [18] for
the pure birefringence (see [4]) does not seem to
be justification enough, since the effect of the
other optical properties (NA, dichroism, etc) has
been ignored in [4].

In order to decide definitely between the

two alternative sets of the Cij components, ex-

> When employing those quantities in practice, one
should remember a possibility for opposite signs in
the definitions of A, ¢ and Y parameters used by
different authors (see [1]).
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perimental measurements of the well resolved
(large-period) oscillation temperature depend-

ences C;(7) and C,,(T) may be recommend-

ed, with focusing at the relative oscillation phase
shifts. The same refers to catching the difference
in behaviours of the output light polarization
(the y and & parameters) for the NA and FA. The
most detailed data for the MR oscillation
dependences under the rotation of sample by 90°
around the beam direction (A—>-A and
k — —k ) reported so far (see Fig. 6a [3], Fig. 15
[5] and Fig. 1 [8]) strongly indicate to validity of
the relations [1,3,5,8]. They show a clear
shift after that rotation,
consistent with the arguments (2¢p+A) or

(2¢ + A/2) of the functions C; and C,,, rather

oscillation phase

than the arguments 2¢ and A separately (the
phase shift in the latter case would have been
Z€ro).

Analysis of experiments for the pure
natural optical activity

Finally, let us concentrate on the interpretation
of experimental NA data for the optic axis
directions. The relevant oscillating temperature
dependences ¢(7T) measured with a convent-
ional polarimeter may be found, e.g., in [1]
(Fig.5), [20] (Fig.1) and [6] (Fig.12a)
respectively for a-ZnP, and quartz crystals (see
also the data [21] for LilOs), whereas the &(T)

dependence for a-ZnP, has been represented in
[20] (Fig. 3). The example for a-ZnP; is cited in
Figure 2. Unlike the study [14], the authors
[1,6,20] have analysed those data using the
invalid relations [1,6] that predict the MR
influence (the theoretical oscillation amplitude
A, =2R$", or A, /¢ ~8% for the refract-
ive indices ~1.5) at the normal incidence.
Nevertheless, they have succeeded in explaining
the observed ¢(7) and &(T) periodicity (see
Figure 2). What has been really established in
[1,6,20] is the fact that the above oscillations are
indeed to be prescribed to the MR, following

Ukr. J. Phys. Opt. V5. Ne3
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Fig. 2. Temperature dependence of specific op-
tical rotatory power p=¢/d due to NA for a-

ZnP, crystals (d = 0.34 mm, heating run, tem-
perature scan rate 6 °C/h — see the data [1]).

from the temperature period values. However, in
order to decide among the specific theoretical
relations for ¢(7"), one should again analyse the
oscillation amplitude and phase. Comparison of

A,, with the experimentally observed amplitude
4,,, for §(T) and &(T) in o-ZnP, (Figure 2)

has given unexpectedly small

=4, 14, (S~002-0.04 - see also

[1,20]). It is an order of magnitude smaller than

parameters

that found for the x-cut sample tested for the
ordinary birefringence [1], in spite of that the
latter ~ sample has larger = dimensions
(d=1.41 mm) and it is its S that should be
possibly smaller, due to a stronger reduction of

the parameters S, and fg by the light
scattering (8=, Bz f8,, with S, being the

surfaces’ non-parallelity contribution — see [1]).
According to our calculations, the results [6] for
quartz also demonstrate very small oscillation
amplitudes (B ~ 0.03 at the most — see Table),

again unlike the anisotropic birefringent

propagation directions. The only remained
assumption has been a notable non-parallelity of
the entrance and exit faces of the crystal plate
[1,6,20].

Let us now use the order-of-magnitude

estimation S, ~sin(ayp/d)/(ayp/d) (a being
the diameter of the probing light beam, y the

Ukr. J. Phys. Opt. V5. Ne3

angle between the sample faces and

ap/d~10*) [3] and the results for the MR in
the NA along the optic axis reported in a number
of studies [1,6,14,20-22]. As seen from Table,
the sample wedge angles necessary for efficient
reduction of the MR are ~10'. As a matter of
fact, the value y ~1-5" represents high enough
commercial standards required only if the laser
resonators or special-purpose plane-parallel
plates are dealt with, while

y ~10—-50" are quite bearable and cannot be

the reason for the fact of £ ~0.03. It is

the wvalues

therefore impossible to explain the extreme
weakness of the MR oscillations observed in [6]
formulae like

on the basis of

p=¢""(1- 2[,Rcos2p) (see [6]).

The correct interpretation should be based
on the fact of rising of the MR effect with a
deviation of light propagation direction from the
optic axis (cf. the JMs (2) and (7)). In practice,
this should mean a nonzero incidence angle
i #0 [14] which, when using no special means,

may be as large as i~0.5—2°. Derivation of
explicit functions ¢(7) and &(T) in case of

i # 0 and the presence of the MR is enormously
complicated task, because the parameter i,
determining the refractive index values, affects
all the intermediate quantities, including the
one-surface reflectances and transmittances (see
subsection 2.1 in [1]). We
ourselves to rough estimations of ¢(7T) and

shall confine

&(T) oscillation amplitudes, using the
experimental and numerical-solution ¢#(i) and
£(i) data by Melle [14] for the quartz crystals.
Following from the results [14] and the pro-

portionality  4,,, o« 2¢'” fRexp(-ad) (B ~1),
Apy 0.04 deg (¢ ~20 deg,
d ~1 mm) for the quartz [6] and 4,, ~0.4 deg

the wvalues

(4 ~120 deg— see Figure2) for o-ZnP,

should correspond respectively to i~0.9° and
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Table. Some experimental and calculated parameters concerned with the MR manifestations in

the NA measured nearly along the optic axis.

Crystal and | Sample wedge | Sample-wedge MR | Total MR reducing Angle of
reference angle ¥ reducing factor ﬂp factor g * incidence i
SiO, [14] 5-20" ** 0.9-1 ~0 =0
SiO, [22] 18' 0.02 =0 ?
SiO;, [6] 2! 0.1 <0.01 ?

20" 0.9 0.03 0.9°
o-ZnP, 40" 0.5 0.02-0.04 1.3°
[1,20] ol S

* The values calculated as if the MR were presentat i =0;

** The values calculated on the basis of the accuracy of 1 um (see [14]) for the sample thickness

control;

*** The value calculated with the £(T) ellipticity data [20].

i~1.3" (see Table). If we compare the result
-3 . .
4, =4-107 [20] for the £(7) amplitude in o.-

ZnP, (A, < pfRexp(—ad), with S ~1) to the

exp
average ellipticity ~4-107* predicted for i=3°
[14], the estimation i ~1° follows again.

Thus, small values of the total MR-

reducing factor S presented in Table reflect a
MR  with
approaching to the i =0 condition, rather than a

gradual disappearance of the
scattering of light or large sample wedge angles
[6]. The true g values, which can be derived
after specifying the exact analytic form of the
function A4, (i), should be most likely g ~1 for

the high-quality samples and the wedge angles
y~20". It is also evident from the above

discussion that there is no need in making
wedge-like crystal samples in order to reduce
the interference MR effects, which may impose
difficulties in the Landau-type thermodynamic
analysis or, when unresolved, produce
experimental noises for the NA (see [22,23]).
The simplest way consists in accurate
orientation of crystal in the optical system that
ensures the absence of the MR under the exact
(i=0) light

condition of normal beam

incidence.
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