Home
page
Other articles
in this issue |
Cubic–quartic optical
solitons having quadratic–cubic nonlinearity by sine–Gordon equation
approach
1Yakup Yıldırım, 2,3,4,5Anjan Biswas, 6,7Anelia
Dakova, 5Padmaja Guggilla, 5Salam Khan, 3Hashim
M. Alshehri and 8Milivoj R. Belic
1Department of Mathematics, Faculty of Arts
and Sciences, Near East University, 99138 Nicosia, Cyprus
2Department of Applied Mathematics, National
Research Nuclear University, 31 Kashirskoe Hwy, Moscow–115409, Russian
Federation
3Mathematical Modeling and Applied Computation
(MMAC) Research Group, Department of Mathematics, King Abdulaziz University,
Jeddah–21589, Saudi Arabia
4Department of Mathematics and Applied Mathematics,
Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South
Africa
5Department of Physics, Chemistry and Mathematics,
Alabama A&M University, Normal, AL 35762–4900, USA
6Physics and Technology Faculty, University
of Plovdiv ``Paisii Hilendarski", 24 Tsar Asen Street, 4000 Plovdiv, Bulgaria
7Institute of Electronics, Bulgarian Academy
of Sciences, 72 Tzarigradcko Shossee, 1784 Sofia, Bulgaria
8Institute of Physics Belgrade, Pregrevica
118, 11080 Zemun, Serbia
Download this
article
Abstract. This paper recovers cubic–quartic optical solitons
with quadratic–cubic nonlinearity for the first time. Both polarization–preserving
fibers as well as birefringent fibers are considered. The study is subsequently
extended to include perturbation terms that are of Hamiltonian type. The
adopted integration algorithm is the sine–Gordon equation method
Keywords: solitons, quadratic–cubic nonlinearity,
birefringence, perturbation
UDC: 535.32
Ukr. J. Phys. Opt. 22 255-269
doi: 10.3116/16091833/22/4/255/2021
Received: 22.10.2021
Анотація. Вперше виявлено кубічно-квартичні
оптичні солітони з квадратично-кубічної
нелінійністю. Розглянуто як поляризаційні
волокна, так і волокна з подвійним заломленням.
Дослідження також розширено на випадок
розгляду членів збурення гамільтонового
типу. Алгоритмом інтегрування, прийнятим
у цій роботі, є метод рівняння синус-Гордона.
Ключові слова: солітони, квадратично-кубічна
нелінійність, подвійне заломлення, збурення |
|
REFERENCES
-
Asma M, Othman W A M, Wong B R and Biswas A, 2017. Optical soliton perturbation
with quadratic-cubic nonlinearity by semi-inverse variational principle.
Proc. Rom. Acad. A. 18: 331−336.
-
Asma M, Othman W A M, Wong B R and Biswas A, 2017. Optical soliton perturbation
with quadratic-cubic nonlinearity by the method of undetermined coefficients.
J. Optoelectron. Adv. Mater. 19: 699-703.
-
Asma M, Othman W A M, Wong B R and Biswas A, 2017. Optical soliton perturbation
with quadratic-cubic nonlinearity by traveling wave hypothesis. Optoelectron.
Adv. Mater. - Rapid Commun. 11: 517−519.
-
Asma M, Othman W A M, Wong B R and Biswas A, 2019. Chirped optical Gausson
perturbation with quadratic–cubic nonlinearity by collective variables.
Opt. Quantum Electron. 51: 200. doi:10.1007/s11082-019-1878-9
-
Astrakharchik G E and Malomed B A, 2018. Dynamics of one-dimensional quantum
droplets. Phys. Rev. A. 98: 013631. doi:10.1103/PhysRevA.98.013631
-
Biswas A, 2020. Quasi–monochromatic dynamics of optical solitons having
quadratic–cubic nonlinearity. Phys. Lett. A. 384: 126528. doi:10.1016/j.physleta.2020.126528
-
Biswas A, Sonmezoglu A, Ekici M, Alzahrani A K and Belic M R, 2020. Cubic–quartic
optical solitons with differential group delay for Kudryashov’s model
by extended trial function. J. Commun. Technol. Electron. 65: 1384-1398.
doi:10.1134/S1064226920120037
-
Fujioka J, Cortes E, Perez-Pascual R, Rodriguez R F, Espinosa A and Malomed
B A, 2011. Chaotic solitons in the quadratic-cubic nonlinear Schrödinger
equation under nonlinearity management. Chaos. 21: 033120. doi:10.1063/1.3629985
-
Hayata K and Koshiba M, 1994. Prediction of unique solitary-wave polaritons
in quadratic–cubic nonlinear dispersive media. J. Opt. Soc. Amer. B.
11: 2581-2585. doi:10.1364/JOSAB.11.002581
-
Hayata K and Koshiba M, 1994. Kink solitons in quadratic-cubic nonlinear
dispersive media. Phys. Rev. E. 50: 3267. doi:10.1103/PhysRevE.50.3267
-
Khuri S A and Wazwaz A M, 2021. Soliton solutions through optical fibers
for quadratic–cubic nonlinear medium: A complex ansätze approach. Optik.
229: 166268. doi:10.1016/j.ijleo.2021.166268
-
Triki H, Biswas A, Moshokoa S P and Belic M, 2017. Optical solitons and
conservation laws with quadratic-cubic nonlinearity. Optik. 128: 63-70.
doi:10.1016/j.ijleo.2016.10.010
-
Zayed E M E, El-Horbaty M and Alngar M E M, 2020. Cubic-quartic optical
soliton perturbation having four laws non-linearity with a prolific integration
algorithm. Optik. 220: 165121. doi:10.1016/j.ijleo.2020.165121
-
Zayed E M E, Shohib R M A, Alngar M E M, Biswas A, Ekici M, Khan S, Alzahrani
A K and Belic M R, 2021. Optical solitons and conservation laws associated
with Kudryashov’s sextic power-law nonlinearity of refractive index.
Ukr. J. Phys. Opt. 22: 38-49. doi:10.3116/16091833/22/1/38/2021
-
Zayed E M E, Nofal T A, Alngar M E M and El-Horbaty M M, 2021. Cubic-quartic
optical soliton perturbation in polarization-preserving fibers with complex
Ginzburg-Landau equation having five nonlinear refractive index structures.
Optik. 231: 166381. doi:10.1016/j.ijleo.2021.166381
-
Kudryashov N A, 2020. Periodic and solitary waves in optical fiber Bragg
gratings with dispersive reflectivity. Chin. J. Phys. 66: 401-405. doi:10.1016/j.cjph.2020.06.006
-
Biswas A, 2020. Optical soliton cooling with polynomial law of nonlinear
refractive index. J. Opt. 49: 580-583. doi:10.1007/s12596-020-00644-0
-
Zayed E M E, Alngar M E M, Biswas A, Kara A H, Moraru L, Ekici M, Alzahrani
A K and Belic M R, 2020. Solitons and conservation laws in magneto-optic
waveguides with triple-power law nonlinearity. J. Opt. 49: 584-590. doi:10.1007/s12596-020-00650-2
-
Zayed E M E, Al-Nowehy A G, Alngar M E M, Biswas A, Asma M, Ekici M, Alzahrani
A K and Belic M R, 2021. Highly dispersive optical solitons in birefringent
fibers with four nonlinear forms using Kudryashov’s approach. J. Opt.
50: 120-131. doi:10.1007/s12596-020-00668-6
-
Vega-Guzman J, Biswas A, Asma M, Seadawy A R, Ekici M, Alzahrani A K and
Belic M R, 2021. Optical soliton perturbation with parabolic–nonlocal
combo nonlinearity: undetermined coefficients and semi-inverse variational
principle. J. Opt. doi:10.1007/s12596-020-00670-y
-
Gonzalez-Gaxiola O, Biswas A, Ekici M and Khan S, 2021. Highly dispersive
optical solitons with quadratic–cubic law of refractive index by the
variational iteration method. J. Opt. doi:10.1007/s12596-020-00671-x
-
Yildirim Y, Biswas A, Kara A H, Ekici M, Alzahrani A K and Belic M R, 2021.
Cubic–quartic optical soliton perturbation and conservation laws with
generalized Kudryashov’s form of refractive index. J. Opt. 50: 354-360.
doi:10.1007/s12596-021-00681-3
-
Yildirim Y, Topkara E, Biswas A, Triki H, Ekici M, Guggilla P, Khan S and
Belic M R, 2021. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel
model by sine-Gordon equation approach. J. Opt. 50: 322-329. doi:10.1007/s12596-021-00685-z
-
Yildirim Y, Biswas A, Triki H, Ekici M, Guggilla P, Khan S, Moraru L and
Belic M R, 2021. Cubic–quartic optical soliton perturbation with Kudryashov’s
law of refractive index having quadrupled–power law and dual form of
generalized nonlocal nonlinearity by sine-Gordon equation approach.J. Opt.
50: 593-599. doi:10.1007/s12596-021-00686-y
-
Yildirim Y, Biswas A, Kara A H, Ekici M, Zayed E M E, Alzahrani A K and
Belic M R, 2021. Optical solitons and conservation law with Kudryashov’s
form of arbitrary refractive index. J. Opt. 50: 542–547. doi:10.1007/s12596-021-00688-w
(c) Ukrainian Journal
of Physical Optics |