Home
page
Other articles
in this issue |
Single-photon entanglement
at acousto-optic (acousto-gyration) diffraction
Skab I., Kostyrko M. and Vlokh R.
O. G. Vlokh Institute of Physical Optics, 23 Dragomanov
Street, 79005 Lviv, Ukraine
Download this
article
Abstract. We show that a single-photon entanglement can be realized
at the collinear acousto-gyration diffraction in optical active and optically
uniaxial (or isotropic) media. The entanglement between two degrees of
freedom, spin angular momentum and orbital angular momentum, can occur
when a standing longitudinal acoustic wave is excited in the above media.
This makes it possible to realize four maximum entangled Bell states.
Keywords: quantum entanglement, photons, optical
activity, acousto-optics, acousto-gyration
UDC: 535.56+535.14+534.16+535.42
Ukr. J. Phys. Opt. 21 152-158
doi: 10.3116/16091833/21/3/152/2020
Received: 16.07.2020
Анотація. Показано, що однофотонне
заплутування можна реалізувати за умови
колінеарної акустогіраційної дифракції
в оптично активних і оптично одновісних
(або ізотропних) середовищах. Заплутування
між двома ступенями вільності (спіновим
моментом імпульсу і орбітальним моментом
імпульсу) відбувається в тому разі, коли
в зазначених середовищах збуджено стоячу
поздовжню акустичну хвилю. Це дає змогу
реалізувати чотири максимально заплутаних
стани Белла.. |
|
REFERENCES
-
Bokulich A and Jaeger G. Philosophy of quantum information and entanglement.
Cambridge: Cambridge University Press (2010). 10.1017/CBO9780511676550
-
Einstein A, Podolsky B and Rosen N, 1935. Can quantum-mechanical description
of physical reality be considered complete? Phys. Rev. 47: 777-780. 10.1103/PhysRev.47.777
-
Bell J S, 1964. On the Einstein Podolsky Rosen paradox. Physics Physique
Fizika. 1: 195-200. 10.1103/PhysicsPhysiqueFizika.1.195
-
Freedman S J and Clauser J F, 1972. Experimental test of local hidden-variable
theories. Phys. Rev. Lett. 28: 938-941. 10.1103/PhysRevLett.28.938
-
Aspect A, Grangier P and Roger G, 1981. Experimental tests of realistic
local theories via Bell's theorem. Phys. Rev. Lett. 47: 460-463. 10.1103/PhysRevLett.47.460
-
Häffner H, Hänsel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, Körber
T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W and Blatt
R, 2005. Scalable multi-particle entanglement of trapped ions. Nature.
438: 643-646. 10.1038/nature04279
-
Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques
V, Gaebel T, Jelezko F and Wrachtrup J, 2008. Multipartite entanglement
among single spins in diamond. Science. 320: 1326-1329. 10.1126/science.1157233
-
Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W, 2004. Experimental
demonstration of five-photon entanglement and open-destination teleportation.
Nature. 430: 54-58. 10.1038/nature02643
-
Juan Yin, Ji-Gang Ren, He Lu, Yuan Cao, Hai-Lin Yong, Yu-Ping Wu, Chang
Liu, Sheng-Kai Liao, Fei Zhou, Yan Jiang, Xin-Dong Cai, Ping Xu, Ge-Sheng
Pan, Hao Yin, Yu-Ao Chen, Cheng-Zhi Peng and Jian-Wei Pan, 2012. Quantum
teleportation and entanglement distribution over 100-kilometre free-space
channels. Nature. 488: 185-188. 10.1038/nature11332
-
Xi-Lin Wang, Xin-Dong Cai, Zu-En Su, Ming-Cheng Chen, Dian Wu, Li Li, Nai-Le
Liu, Chao-Yang Lu and Jian-Wei Pan, 2015. Quantum teleportation of multiple
degrees of freedom of a single photon. Nature. 518: 516-519. 10.1038/nature14246
-
Pittman T B, Jacobs B C and Franson J D, 2001. Probabilistic quantum logic
operations using polarizing beam splitters. Phys. Rev. A. 64: 62311. 10.1103/PhysRevA.64.062311
-
Kok P, Munro W J, Kae Nemoto, Ralph T C, Dowling J P and Milburn G J, 2007.
Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.
79: 135-174. 10.1103/RevModPhys.79.135
-
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L,
2010. Quantum computers. Nature. 464: 45-53. 10.1038/nature08812
-
Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih
Y, 1995. New high-intensity source of polarization-entangled photon pairs.
Phys. Rev. Lett. 75: 4337-4341. 10.1103/PhysRevLett.75.4337
-
Boyer V, Marino A M, Pooser R C and Lett P D, 2008. Entangled images from
four-wave mixing. Science. 321: 544-547. 10.1126/science.1158275
-
Aspect A, Dalibard J and Roger G, 1982. Experimental test of Bell's inequalities
using time-varying analyzers. Phys. Rev. Lett. 49: 1804-1807. 10.1103/PhysRevLett.49.1804
-
Aspect A, Grangier P and Roger G, 1982. Experimental realization of Einstein-Podolsky-Rosen-Bohm
Gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev.
Lett. 49: 91-94. 10.1103/PhysRevLett.49.91
-
Zwiebach B. 8.05 Quantum Physics II. Fall 2013. Massachusetts Institute
of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative
Commons BY-NC-SA.
-
D'Ambrosio V, Carvacho G, Graffitti F, Vitelli C, Piccirillo B, Marrucci
L and Sciarrino F, 2016. Entangled vector vortex beams. Phys. Rev. A. 94:
030304(R). 10.1103/PhysRevA.94.030304
-
Lixiang Chen and Weilong She, 2010. Single-photon spin-orbit entanglement
violating a Bell-like inequality. J. Opt. Soc. Amer. B. 27: A7-A10. 10.1364/JOSAB.27.0000A7
-
Aiello A, Töppel F, Marquardt C, Giacobino E and Leuchs G, 2015. Quantum−like
nonseparable structures in optical beams. New J. Phys. 17: 043024. 10.1088/1367-2630/17/4/043024
-
O. G. Vlokh, R. O. Vlokh and I. P. Skab, 1990. Acoustogyration diffraction
of light. Proceedings IEEE 7th International Symposium on Applications
of Ferroelectrics, Urbana-Champaign, IL, USA, 657. 10.1109/ISAF.1990.200340
-
Martynyuk-Lototska I Yu, Mys O G, Akimov S V, Krupych O M and Vlokh R O,
2010. Acoustogyration diffraction of optical waves: case of SiO2 and TeO2
crystals. Opto-Electron. Rev. 18: 137-149. 10.2478/s11772-010-0014-y
-
Skab I and Vlokh R, 2012. On the conservation of optical angular momentum
acoustogyration diffraction of light Ukr. J. Phys. Opt. 13: 1-3. 10.3116/16091833/13/1/1/2012
(c) Ukrainian Journal
of Physical Optics |