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Abstract. We show that a single-photon entanglement can be realized at the
collinear acousto-gyration diffraction in optical active and optically uniaxial (or
isotropic) media. The entanglement between two degrees of freedom, spin angular
momentum and orbital angular momentum, can occur when a standing longitudinal
acoustic wave is excited in the above media. This makes it possible to realize four
maximum entangled Bell states.
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1. Introduction

Quantum entanglement is one of the pronounced effects that make quantum mechanics different
from it classical analogue [1]. This effect, which consists in non-classical correlations between
distant quantum systems, has at first been criticized as an Einstein—Podolsky—Rosen paradox in the
work [2]. A non-local character of quantum-mechanical effects becomes commonly perceived
only after a well-known theorem by J. S. Bell has been formulated [3] and a series of appropriate
experiments have been reported [4, 5].

The quantum entanglement has been observed using different particles such as ions [6],
nuclei and electronic spins [7] and photons [8]. Preparation of entangled photons is probably the
most simple from the viewpoint of experimental procedures. Moreover, the entangled photons
have been used to implement quantum teleportation, quantum logic and quantum computation
operations [9-13]. Classical experiments with correlated photons are based on such nonlinear
optical phenomena as spontaneous parametric down-conversion [14], four-wave mixing [15] or
cascade radiation in calcium excited due to a two-photon absorption [5, 16, 17]. During the
nonlinear processes mentioned above, decay of one (or more) photon(s) into two (or more)
photons with entangled quantum states can be realized. The outgoing photons (e.g., at the down-
conversion) can be described by the wave functions
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where {|t,z/l”’>,|t//2"’ >} and {|t,z/l”>,|t//;’ >} are the basis vectors in some Hilbert spaces H, and H, .
States of these photons are non-separable [18], i.e. the state vector of whole system
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cannot be decomposed in the tensor product. Here the pure state is given by |l//> eH, ®H, , while
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|t,1/l.”’> and |y/;’> are the pure states of i and j subsystems. In the case of two-particle entanglement,

one can remind a simple criterion [18], which states that the particles are entangled when the

determinant of tensor product of their states is not equal to zero (det|t//> #0). This criterion

represents an easy tool in analyzing the possibilities for realization of quantum entanglement.
So-called intrasystem [19] (or single-photon [20]) entanglement effects can be mentioned
among the possibilities for realizing the quantum entanglement. Then a single photon reveals
entanglement between its different degrees of freedom, e.g. spin angular momentum (SAM) and
orbital angular momentum (OAM). Note that a non-locality property of a quantum system does
not manifest itself in this classical type of entanglement.
The nonlinear optical processes that can lead to an alternative intersystem quantum
6) @ 1t

entanglement are described by the third- or fourth-order nonlinear susceptibilities, y;;" or x,; -

would be proper to remind in this respect that the effect of acousto-optic diffraction is a bilinear
process which is just described by a fourth-order susceptibility:
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In Eq. (3), E is the electric field of the incident optical wave at the frequency @, e the

J
mechanical strain caused by the acoustic wave at the frequency Q , and P”* the polarization of
diffracted wave at the frequency o+ Q. Notice that the incident photon does not decay into zero-
and first-order diffracted photons at the acousto-optic diffraction (e.g., at the Bragg diffraction).
Instead, it can exist in this or that quantum state with certain probability. Therefore, one could
assume that the acousto-optic diffraction cannot be accompanied with the intersystem
entanglement.

The present work is aimed at ascertaining the possibilities for realization of the intrasystem
quantum entanglement under the condition of acousto-optic diffraction.

2. Analysis

We will start our consideration from the analysis of appearance of non-separable states at the
down-conversion, as an example. Let C represent the incident photon which is nonlinearly
converted into photons with lower energies due to the processes C=V,+H, or C=H, +V,

(see Fig. 1). The state vectors for the vertical and horizontal polarizations read as
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Fig. 1. Schematic view of photon states appearing at
the down-conversion. Double-sided arrows indicate
vertical (V) and horizontal (H) photon polarizations.
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The four maximum entangled Bell states in this case are as follows:

1 1 (0 =1 .
|'/’>1,z=$(|Vl>®|H1>i|H2>®|V2>)=E(1 Oj’ since det|y/>l’2=det(1 0j=$1, (5)
and
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|W>3’4=E(|Vl>®|V2>i|Hl>®|H2>)=E(0 1j,smcedet|t,1/>3’4=det{0 Jzil. (6)

Notice that the equalities det(V,V,+V H)=det(H,V,+H H,) =det(V,V,+H,V,) =
=det(H,H,+V,H,)=0hold true and, hence, these states are separable. Eqgs.(5) and (6)

correspond to the two qubits that appear due to the down-conversion process.

Contrary to the down-conversion, in the case of anisotropic acousto-optic Bragg diffraction a
photon can exist, with certain probabilities, in the two quantum states. These are zero and first
diffraction orders which correspond to orthogonal light polarizations. Thus, one can consider
either a single-photon positional-polarization intrasystem entanglement [21] (when the zero and
first orders of diffraction are spatially separated) or a frequency-polarization intrasystem
entanglement (when the zero and first orders of diffraction are frequency separated due to Doppler
shift). Although, according to Ref. [21], these types of classical entanglement (i.e., incoherent
superposition of the beams with orthogonal polarizations) are somewhat different from the
quantum entanglement, still a closer case is the spatial-polarization type of entanglement which
deals with the vector beams and the beams bearing OAM. Then a natural question arises: can the
acousto-optic diffraction be accompanied by the appearance of OAM?

Let us now consider the effect of acousto-gyration diffraction, which is a particular kind of
acousto-optic interactions in gyrotropic elasto-gyration media [22, 23]. As we have shown earlier
[22, 23], propagation of longitudinal acoustic waves along an optic-axis direction in some optically
uniaxial crystals, which exhibit elasto-gyration effect, can induce a diffraction grating based on the
modulation of antisymmetric part of dielectric permittivity (or gyration tensor). This induces an
acousto-gyration diffraction of light. The effect arises due to perturbations of dielectric
permittivity via elasto-gyration coupling. Unlike the commonly known acousto-optic diffraction,
the acousto-gyration can be only anisotropic, i.e. the incident and diffracted beams must have
mutually orthogonal polarizations.

Let us examine a collinear case of interaction, when three interacting waves propagate
along the optic axis in a uniaxial and optically active crystal (see Fig. 2). These are a longitudinal
acoustic wave, an incident optical wave (e.g., a left-handed circularly polarized one),
and a diffracted (right-handed circularly polarized) optical wave. Then the relation for the
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coefficient, v,, the longitudinal acoustic wave velocity (with its first index corresponding to the

acousto-gyration figure of merit is defined as M, = with f,, being the elasto-gyration

propagation direction and the second one to the polarization one), n, the ordinary refractive index,
and p the crystal density. We have found that M, (e.g., for quartz crystals) is equal to 10" in

its order of magnitude. In other words, the M,, parameter is four orders smaller than the typical
figures of merit for the ordinary acousto-optic diffraction. It is obvious that the effect given by so a
small size can hardly be detectable in practice.
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Fig. 2. Phase matching conditions for the acousto-gyration interactions that occur among a travelling (panels a
and b) or standing (panel c) longitudinal acoustic wave and circularly (a, b) or linearly (c) polarized incident
photons.

Nevertheless, the acousto-gyration diffraction can reveal very interesting peculiarities [24]. In
fact, this effect manifests itself as a diffraction of, e.g., a right-handed optical photon (i.c., a photon
with the SAM equal to oc=#%) at a longitudinal acoustic phonon with the zero total angular
momentum. Then a left-handed diffracted photon (i.e., a photon with the SAM o = -7 ) appears.
As a consequence, the SAM changes according to the scheme 7 — —# . In such a case, the total
angular momentum changes its value by 27 . Since the principle of conservation of the total
angular momentum requires equality of the momentums before the acousto-gyration interaction
begins and after the process is completed, the diffracted photon must have an additional optical
angular momentum equal to 27 . The latter should obviously correspond to the OAM /, because
the angular momentum cannot be transferred into mechanical one owing to the axial symmetry of
interaction. This means that the circularly polarized diffracted photon must bear a doubly charged

vortex and its quantum state has to be written as |o-, / ) = |—h, 2h ) .

In the situation described above, one can distinguish the two Hilbert spaces corresponding to
the spin and orbital degrees of freedom. However, only a collinearly diffracted wave has a nonzero
OAM when being diffracted at a travelling acoustic wave (cf. Fig. 2a and Fig. 2b). Let us now
imagine that some linearly polarized incident optical wave interacts with a standing longitudinal
acoustic wave (see Fig. 2c). Then the incident wave will be decomposed into two circularly
polarized waves with different polarization signs, which appear due to a circular optical
birefringence. In other terms, the incident photon with a zero spin can exist, with the same
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probabilities, in two quantum states that differ by the signs of their SAM (|o->=|R> and

|—o-> = |L> ). This state can be written as

#) =5 (7)), U

After the acoustic signal is switched on, the both quantum states of the photon will give rise
to the diffracted photons in the quantum states |o-,l> = |—h, 2h > and |o-,l> = |h —2h ) . Then the

outgoing entangled state is as follows:

|#), =—=(|L.2h)+|R,-21)). (8)

1
V2
Eq. (8) is written under the condition that the phase difference between the right-handed and left-
handed waves is compensated. Let the SAM belong to the Hilbert space with the basis vectors 7;
and n,, while the OAM to the space with the basis vectors m; and m,. Then the state given by
Eq. (8) can be represented as

|"Ij>1 =%|nl,m2>+%|n2,ml>, (9)

which is encoded by the matrix
B= . (10)

Notice that detB # 0 and, according to the criterion mentioned above, this state is entangled. Let
the phase difference between the right-handed and left-handed waves be equal to 7 . In this case,
Eq. (8) can be rewritten to

1 ; 1
¥), = E(|L,2h)+e’” |R,—2h>) = E(|L,2h>—|R,—2h)) : (11)
Using a half-wave plate, one can transform the states given by Egs. (8) and (11) into the states

1

[#); =75 (R 20)+|L.-2m). (12)
1

VY)Y =—|\|R.2h)—|L,-2h)) . 13

[#)y =77 (1R.21) |, -2m)) (13)

It is easily seen that the states |'P>2 , |'1U>3 and |'P> 4, are non-separable because the determinants

of the relevant matrices are nonzero. Hence, the quantum states given by Eq. (8) and Eqgs. (11)—
(13) represent the four maximum entangled Bell states.

3. Conclusion

We have demonstrated that the single-photon entanglement can be realized in case of a special
kind of acousto-optic diffraction, a collinear acousto-gyration interaction in optical active and
optically uniaxial (or isotropic) materials. Under these conditions, the orbital angular momentum
in the diffracted beam must appear due to a general requirement of conservation of the total
angular momentum. The entanglement between the two degrees of freedom, the SAM and the
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OAM, occurs when the standing longitudinal acoustic wave is excited in the medium. This makes

it possible to realize the four maximum entangled Bell states. The criteria for verification of this

type of entanglement are discussed.
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Anomauin. [loxasano, wo 00HODOMOHHE 3aANIYMYBAHHS MOJNCHA pedanizyeamu 3d YMOGU
KOJIHeapHOi aKycmozipayitinoi ougparkyii 6 onmuyHO AKMUGHUX [ ONMUYHO OOHOBICHUX (aO0
i30mponnux) cepedosuwax. 3aniymyeanHs Midc 080MA CMYNEHAMU BLIbHOCMI (CHIHO8UM
MOMEHMOM IMAYIbCY | OPOIMATbHUM MOMEHMOM IMNYIbCY) 8I00Y68AEMbCsL 8 MOMY pa3l, KOIU 8
BA3HAYEHUX Cepedosuuax 30Y0HCeH0 CMosdy NO3006dCHI0 akycmuuny xeunio. Lle dae 3moey
peanizyeamu Yomupu MakCUMaibHo 3aniymanux cmanu benna.
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