Ukrainian Journal of Physical Optics 

Volume 21, Issue 3, 2020

Home page

Other articles 

in this issue
Reconstruction of spatial distribution of strains in crystals using the energy spectrum of X-ray Moiré patterns

Fodchuk I. M., Balovsyak S. V., Novikov S. M., Yanchuk I. V. and Romankevych V. F.

Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubinsky Str., 58002 Chernivtsi, Ukraine

Download this article

Abstract. We develop a new approach to the analysis of experimental Moiré patterns obtained with LLL-interferometer. Radial distributions of the energy spectra of Moiré patterns reveal different sensitivities to the sources of local mechanical strains in the low- and high-frequency ranges. This offers new possibilities for determining the magnitudes of total mechanical strains and reconstructing their spatial distributions in crystals.

Keywords: ZLLL-interferometers, Moiré patterns, strain fields, frequencies of radial distributions, Fourier energy spectra

UDC: 548.4-548.734
Ukr. J. Phys. Opt. 21 141-151
doi: 10.3116/16091833/21/3/141/2020
Received: 06.03.2020

Анотація.  Розвинуто новий підхід до аналізу експериментальних муарових картин, одержаних за допомогою LLL-інтерферометра. Радіальні розподіли енергетичних спектрів муарових зображень виявляють різну чутливість до джерел локальних механічних напружень у низькочастотному та високочастотному діапазонах. Це пропонує нові можливості для визначення загальної величини механічних деформацій та реконструкції їхнього просторового розподілу в кристалах.

  1. Bonse U and Hart M, 1965. X-Ray interferometer. Appl. Phys. Lett. 6: 155–156. doi:10.1063/1.1754212
  2. Bonse U, Graeff W and Materlik G, 1976. X-Ray interferometry and lattice parameter investigation. Rev. Phys. Appl. (Paris). 11: 83–87. doi:10.1051/rphysap:0197600110108300 
  3. Bonse U, Uebbing H, Bartcher M and Nubhardt M, 1994. X-Ray and Neutron interferometry and the measurement of fundamental constants. J. Metrolog. 31: 195–201. doi:10.1088/0026-1394/31/3/005
  4. Deslattes R D, 1969. Optical and X-ray interferometry of silicon lattice spacing. Appl. Phys. Lett. 15: 386–388. doi:10.1063/1.1652870
  5. Cristiansen G, Gerward L and Andersen A L, 1971. A study of the strain field of grown-in dislocations in a silicon X-ray interferometer. J. Appl. Cryst. 4: 370–375. doi:10.1107/S0021889871007222
  6. Hart M, 1972. A complete determination of dislocation Burgers vectors by X-Ray inter-ferometry. Phil. Mag. 26: 821–831. doi:10.1080/14786437208226958
  7. Deslattes R D, Henins A, Bowman H A, Schoonover R M, Carroll C L, Barnes I L, Machlan L A, Moore L J, and Shields W R, 1974. Determination of the Avogadro constant. Phys. Rev. Lett. 33: 463–466. doi:10.1103/PhysRevLett.33.463
  8. Becker Р, 2001. History and progress in the accurate determination of the Avogadro constant. Rep. Prog. Phys. 64: 1945–2008. doi:10.1088/0034-4885/64/12/206
  9. Momose A, Kawamoto S and Koyama I, 2003. Demonstration of X-ray Talbot interferometry. Japan. J. Appl. Phys. 42: 866–868. doi:10.1143/JJAP.42.L866
  10. Momose A, Takeda T and Itai Y, 1996. Phase-contrast X-ray computed tomography for observing biological specimens and organic materials. Rev. Sci. Instrum. 66: 1434–1436.
  11. Momose A, 2005. Recent advances in X-ray phase imaging. Jap. J. Appl. Phys. 44: 6355–6367. doi:10.1143/JJAP.44.6355
  12. Ferroglio L, Mana G and Massa E, 2008. Si lattice parameter measurement by centimeter X-ray interferometry. Opt. Express. 16: 16877–16888. doi:10.1364/OE.16.016877
  13. Massa E, Mana G and Kuetgens U, 2009. Comparison of the INRIM and PTB lattice-spacing standards. J. Metrologia. 46: 249–253. doi:10.1088/0026-1394/46/3/011
  14. Snigirev A., Snigireva I. ,  Kohn V., Yunkin V., Kuznetsov S., Grigoriev M. B., Roth T., Vaughan G., and  Detlefs C. 2009. X-ray nanointerferometer based on Si refractive bilenses. Phys. Rev. Lett. 103: 064801. doi:10.1103/PhysRevLett.103.064801
  15. Raransky M D, Shafranuk V P and Fodchuk I M, 1985. X-ray interferometric image of deformation fields around dislocation clusters. Metallofizika. 7: 63–71.
  16. Raransky M D, Fodchuk I M, Sergeev V N and Gimchinsky O G, 1993. The influence of ultrasonic deformations on the moiré images. Metallofizika. 15: 72–79.
  17. Raransky N D, Struk Ja M, Fodchuk I M , Shafranuk V P and Raransky A N, 1995. Applied possibilities of an X-ray diffraction interferometry. Proc. SPIE. 2647: 457–467. doi:10.1117/12.226734
  18. Fodchuk I M, Raransky N D and Struk Ya М, 2002. The Moiré images of defects in X-ray three-crystal LLL-interferometry. Metallophysics and Advanced Technologies. 24: 617–628.
  19. Fodchuk I M, Raransky N D and Struk Ya М, 2002. X-ray LLL-interferometry of crystals deformed by concentrated force. Ukr. J. Phys. 47: 1057–1064.
  20. Gevers R, 1962. Dynamical theory of moiré fringe patterns. Phil. Mag. 7: 1681–1720. doi:10.1080/14786436208213703
  21. Authier A. Dynamical theory of X-ray diffraction. Oxford: Science Publications (2001). doi:10.1107/97809553602060000779
  22. Fodchuk I M and Raransky M D, 2003. Moiré images simulation of strains in X-ray interferometry. J. Phys. D: Appl. Phys. 36: A55–A60. doi:10.1088/0022-3727/36/10A/311
  23. Fodchuk I M, Novikov S M and Yaremchuk I V, 2016. Direct and inverse problems in X-ray three-crystal LLL-interferometry. Appl. Opt. 55: B120-B125. doi:10.1364/AO.55.00B120
  24. Fodchuk I M, Novikov S М and Yaremchuk I V, 2016. Reconstruction of a residual strain field in a crystal-analyser of a LLL-interferometer. Metallophysics and Advanced Technologies. 38: 389–403. 
  25. Balovsiak S V, Novikov S M, Fodchuk I M and Yaremchuk I V, 2019. Analysis of moiré X-ray images of deformed crystals using radial distribution of the Fourier energy spectrum. Metallophysics and Advanced Technologies. 41: 389–402. 
  26. Gonzalez R and Woods R. Digital image processing. Upper Saddle River: Prentice Hall (2002).
  27. Kosarevych R J, Rusyn B P, Korniy V V and Kerod T I, 2015. Image segmentation based on the evaluation of the tendency of image elements to form clusters with the help of point field characteristics. Cybernetics and Systems Analysis. 51: 704–713. doi:10.1007/s10559-015-9762-5
(c) Ukrainian Journal of Physical Optics