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Abstract. We develop a new approach to the analysis of experimental Moiré 
patterns obtained with LLL-interferometer. Radial distributions of the energy spectra 
of Moiré patterns reveal different sensitivities to the sources of local mechanical 
strains in the low- and high-frequency ranges. This offers new possibilities for 
determining the magnitudes of total mechanical strains and reconstructing their 
spatial distributions in crystals. 
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1. Introduction 
Optical interferometric methods have given great impulse to novel techniques of multicrystalline 
interferometry of X-ray and neutron radiations [1–3]. The first studies [2, 4] have shown that the 
X-ray interferometry reveals extremely high sensitivity to any disturbance of crystalline structure 
[5, 6]. Currently, this method has many important practical applications in metrology, e.g. when 
determining the Avogadro constant [3, 7, 8] and standardizing X-ray wavelengths [3]. It also repre-
sents a powerful tool for the phase tomography studies of medical and biological samples [9–11]. 
Implementation of combined optical and X-ray interferometries in Refs. [12, 13] has discovered 
even such a fine effect as small influence of surface pressure on the interplanar distances in silicon 
crystals. A promising setup for a multicrystalline interferometer has been suggested in the 
work [14]. 

The effect of structural defects and external actions on the formation of Moiré images using a 
three-crystal LLL-interferometer has been studied in Refs. [15–19]. At the same time, it is 
worthwhile that the quality of interference images is influenced significantly by the structural 
defects and macroscopic mechanical strains present in the plates introduced in interferometer. 
Since the X-ray interferometry rests upon basic laws of optics [20], the studies of formation of  
X-ray interference patterns in the analyzer of a so-called LLL-interferometer, which creates a 
predetermined strain field, are important for the further development of methods aimed at 
reproducing the strain-field distributions and calculating the strain-tensor components created by 
defects [21]. 

Nowadays the dynamic theory of X-rays enables one to carry out any necessary numerical 
simulations of the Moiré patterns under conditions of predetermined strain fields [22–25]. If one 
analyzes some experimental Moiré patterns, the approach makes it potentially possible to obtain all 
the quantitative information about the sources of residual or active strains and their spatial 
distribution. The same refers to the nature of appropriate effects [24]. The models that involve 
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different distributed sets of concentrated forces, which have been used in the works [16, 19, 22–25], 
allow for investigating the influence of long-period or localized strain fields on the X-ray diffraction 
and the interference processes occurring in LLL-interferometers. 

The Moiré images created by one-dimensional sets of local concentrated forces on the output 
surface of the analyzer of three-crystal LLL-interferometer have been investigated in the works 
[23, 24] for the both cases of orientations of those forces parallel or perpendicular to the diffraction 
vector. Different sets of force magnitudes and their spatial distributions selected in the above 
works have testified qualitative agreement of theoretical Moiré patterns with the experimental 
ones, which have been obtained from the residual strain fields created by the scratches during 
scribing the output surface of the analyzer [15]. 

New strain-induced Moiré bands occur near the places where the concentrated forces are 
localized, i.e. in a transition region where the strains change their signs. The shape of those bands 
reflects a general displacement field of the atomic planes created near the sources of forces [24]. 
On the other hand, increase in the period of the Moiré bands upon withdrawal of the concentrated 
forces reflects the behaviour of the total strain field. 

The presence of a constant phase shift in one of the interfering beams in the interferometer 
analyzer induces a decrease in the period, the contrast and the size of the area where the strain-
induced Moiré bands are formed [23]. The area of efficient interaction of the phase and strain 
Moiré components depends not only on the value of constant phase shift, but also on the 
magnitude and distribution of local force sources. 

In the study [25] we have developed the approach that can reproduce dependence of the mean 
spatial frequency of the energy spectra of Moiré images on the magnitude of strain field generated as a 
total of local strain sources. This enables one to estimate the magnitude of the averaged residual strain, 
which has generated the Moiré pattern in the process of scribing the analyzer surface, using the average 
spatial frequency of the energy spectrum [15]. At the same time, one could not establish the relation 
between the parameters of energy spectra and the spatial configuration of strain distribution.  

In the present study, we consider new approaches to the analysis of Moiré intensity distributions 
basing on the Fourier energy spectrum method [25, 26]. We demonstrate different sensitivities to the 
spatial distributions of local strain sources, which are revealed by the radial energy spectra of Moiré 
images in their low-frequency and high-frequency ranges. As a consequence, one can determine on 
this basis both the total magnitude of the strains and their spatial distribution in crystals. 

2. Method for determining the distribution of force sources Pn 
To calculate Moiré intensity distribution as a function of magnitude of the concentrated forces and 
their spatial arrangement, we have utilized the algorithm and the analytical relations given in 
Refs. [22–25]. A scheme of action of some local strain sources P1, …, PN on the output surface of 
the LLL-interferometer is shown in Fig. 1. A sum PNL presented in relative units corresponds to the 
sum of forces Pd (in Newtons). For example, we have Pd = 0.08 N in the case of PNL = 100, which 
characterizes a region of weak strains [15]. The relationship for the sum of forces PNL and the Pd 
parameter is described as (see Ref. [22]) 
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where  is the Bragg angle of X-ray reflection (e.g., for the (220) CuK-radiation), G the shear 
modulus, H


 the diffraction vector, and L the length of a line segment along which a series of 

forces P1,…, PN acts. 
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Fig. 1. Scheme of X-ray LLL-interferometer (see also Ref. [1]): S – splitter, MR – mirror, A – analyzer, aE0  – in-

cident X-ray beam, E0 and Eh – refracted and diffracted beams after splitter S, E0h and Ehh – diffracted beams 
after mirror MR, and Rh and R0 – output beams from the interferometer, which form a Moiré pattern f due to the 
action of concentrated forces P1, …, PN. 

In order to establish the relationship between the strain and the Moiré pattern parameters, we 
have performed the appropriate calculations for five different PNL values (21, 52, 84, 105 and 147). 
This has been done for the following three characteristic shapes Si of the distributions Pn: S1 – a 

uniform distribution 1
nP , S2 – a parabolically curved distribution 2

nP  with a minimum force value 

corresponding to the centre, and S3 – a curved distribution 3
nP  with a maximum in the centre [18]. 

This area of PNL values reflects completely the initial and intermediate stages of formation of 
additional Moiré bands in Fig. 2. 

    (a) 

    (b) 
Fig. 2. Fragment of a set of X-ray Moiré patterns, which are presented as matrices f (i, k) for the distributions of 

concentrated forces 1
nP , 2

nP  and 3
nP  (with the shapes S1, S2 and S3, respectively). PNL is equal to 52 (panel a) 

and 105 (panel b).  
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To carry out Fourier transformation and calculate the energy spectra, the Moiré patterns 
Rh(x, y) shown in Fig. 2 have been represented as digital matrixes f = f(i, k), where the index 
i concerns the series 1, ..., Mi and k the series 1, ..., Nk. Here Mi is the height and Nk the width of 
the pattern in pixels.  

The X-ray Moiré patterns f depend significantly on the magnitude and the type of local force 
distribution (see Fig. 2). We are to note that solving uniquely the inverse problem (i.e., 
reconstructing spatial distribution and magnitudes of the strains that generate a Moiré pattern, 
issuing from this pattern) is still hindered by essential difficulties. We offer an original method to 
overcome them and solve the problem. 

For this aim, we perform a two-dimensional direct discrete fast Fourier transform of the 
matrix f(i, k). The energy spectrum PS (or the spectral power density) is then determined by the 
square module of FC [26]: 

2
CS FP  .      (2) 

The radial distribution (or profile) PR (d) of the Moiré pattern is calculated using the energy 
spectrum PS. Here d is the radial frequency number (d = 1, ..., NR) and 2/),min( kiR NMN  . 

In any Moiré pattern, a high-frequency noise is present in the most of cases [27]. It manifests 
itself as a background in the radial distributions PR(d), especially at high spatial frequencies 
(vr > 0.2 pel–1). Therefore one should remove the noise component from the distributions PR in 
order to calculate accurately the average spatial frequency Rv . This spatial frequency is calculated 
from the radial distribution PR(d) of the energy spectrum [25] as follows: 
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Here the constant component PR(1) is not taken into account when calculating the average 
frequency. Note that, contrary to the PR values for a given frequency, the average spatial frequency 

Rv  of the radial distribution PR does not depend on the experimental conditions under which the 

image has been obtained. 
Our analysis of the Moiré patterns calculated for the cases of different sums of forces PNL 

enables finding a correlation between the Rv  and PNL parameters. This makes it possible to 

reconstruct the sums of the concentrated forces r
NLP  on the basis of the frequency Rv , using a 

piecewise linear fitting [25]. However, no correlation has been found between the frequency Rv  
and the nature of the force distribution Pn. As a result, there is a need in examining the correlation 
between the distributions Pn and PR. 

We develop a theoretical approach to calculate the distribution of forces Pn, issuing from the 
parameters of Moiré patterns. For this aim, we have analyzed a set of reference images shown in 
Fig. 2. The relationship between the nature of Pn and the frequency of radial distribution PR can be 
ascertained after analyzing the shape of PR in different ranges of the vr frequency. We have 
performed the analysis for the dependence PR(vr) not only for the distributions PR containing high-
frequency oscillations, but also for the distributions PRp, which are obtained after transforming PR 
to the logarithmic scale and fitting it with a polynomial of 20th degree (see Fig. 3). 
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Fig. 3. Fragments of fitted radial distributions PRp(vr) of the energy spectra PS of Moiré patterns on a semi-log 
scale. Frequencies vS1, vS2 and vS3 are the boundaries of different ranges, PNL = 105, and S1, S2 and S3 are the 
shapes of force distributions. 

It has been demonstrated that the distributions PRp(vr) exhibit different sensitivities to the 
nature of force distribution in the two alternative frequency ranges (see Fig. 3). Here the range #1 
is limited by the spatial frequencies vS1 and vS2, while the range #2 is limited by the frequencies vS2 
and vS3. The frequencies vS1, vS2 and vS3, which are the abscissas of intersection points of the 
distributions PRp with the shapes S1 and S3, have been determined for each sum of forces PNL 
separately (see Fig. 3). 

Fig. 4 shows dependences of the range boundaries vS1, vS2 and vS3 on the sum of forces PNL, 
which have been obtained for a whole set of reference Moiré patterns. Using a piecewise linear 
fitting, such dependences can be used to calculate the frequencies vS1, vS2 and vS3 for random PNL 
values. Then the relative areas SR1 and SR2 can be estimated for the radial distribution PR(vr) inside 
the calculated frequency ranges (vS1, vS2) and (vS2, vS3): 
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Fig. 4. Dependences vS1(PNL), vS2(PNL) and vS3(PNL) for the boundaries of frequency ranges, as calculated for 
the Moiré patterns shown in Fig. 2. 
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The SR1 and SR2 values have been averaged for all the Moiré patterns with the same sum value 

PNL. The result is given by the average areas SA1 and SA2. The approximate mean areas a
AS 1  and 

a
AS 2  have been calculated by piecewise linear fitting of the dependences SA1(PNL) and SA2(PNL), 

basing on the calculated PNL values. The normalized areas SN1 and SN2 (for PR) are then determined 
by the equations 
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A transformation of the areas from SR1 and SR2 to SN1 and SN2 suggested above yields in the 
fact that the values SN1 and SN2 are no longer dependent on the force sum PNL but depend mainly on 
the shape of the force distribution Pn. 

The values SN1 and SN2 have been averaged for the reference Moiré patterns corresponding to 
the same force distribution (S1, S2 or S3), thus resulting in the corresponding mean normalized 
values SP1 and SP2 for each of the force distributions. The force distributions S1, S2 and S3 
correspond to the theoretical amplitudes of sine function AP, which are equal respectively  
to 0, –0.7 and 0.7. However, the dependences obtained thus far are still ambiguous and do not 
allow one to calculate AP following from SP1 or SP2 (see Table 1). 

Table 1. SP1, SP2 and SP3 values depending on PR as derived for the set of images in Fig. 3. 
Shape of forces 

distribution  AP SP1 SP2 SP3 

S2 –0.7 1.0224 0.8622 0.9612 
S1 0 1.1110 0.8208 1.0000 
S3 0.7 1.0237 1.2904 1.1256 

This is why we have calculated the parameter SP3 from Table 1, which is determined as a 
linear combination of SP1 and SP2 using the proportion of gold cross section. In this manner we 
obtain a unique dependence of AP on the parameters of energy spectrum of the Moiré pattern: 

382.0618.0 213  PPP SSS .     (7) 

Eq. (7) implies the following conditions: (i) if SP3 = 1, then there is a uniform shape S1 of force 
distribution (AP = 0), (ii) if SP3 < 1, we have the shape S2 with a minimum at the centre (AP < 0) 
and, finally, (iii) the inequality SP3 > 1 means the shape S3 with a maximum at the centre (AP > 0). 
 

The final empirical dependence of the reconstructed amplitude APr of sine function, which 
describes the force distribution Pn (see Fig. 5), on the parameter SP3 of the energy spectrum is as 
follows: 
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It is described according to the SP3(AP) values (see Table 1). In our case we have С1 = 43 (at 
SP3 ≤ 1) or С1 = 14 (at SP3 > 1). The dependence APr(SP3) provides the APr changes occurring in the 
acceptable range (from –1 to 1) for arbitrary SP3 values. The dependences APr(SP3) are different for 
the force distributions with the shapes S2 and S3, which is taken into account by different С1 
coefficients. 
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Fig. 5. Dependence APr(SP3): SP3 is the average normalized area of the radial distributions PR for the images 
shown in Fig. 2, the parameters AP are given by Table 1, and APr is the amplitude value reconstructed using 
Eq. (8), which describes the force distribution Pn. 

3. Comparison of calculated and experimental Moiré patterns 
Our approach suggests a solution to the inverse problem of finding the sum PNL of forces and the 
force distribution Pn (with n = 1, …, N), following from the analysis of Moiré patterns. The 

appropriate algorithm is as follows. First, the total force r
NLP  is determined from the mean 

frequencies Rv  of the radial distribution PR [18] (see Fig. 6). The mean square error of r
NLP  

calculations is negligible for the set of reference images: we obtain the absolute error RPL = 1.4 and 
the relative error εPL = 1.7%. 

 
Fig. 6. Comparison of experimentally reconstructed ( r

NLP ) and theoretical ( NLP ) forces: the r
NLP  values found 

from the Rv  values coincide in practice with the NLP  values that correspond to the images ni (see Fig. 2). The 
cases PNL = 21, 52, 84, 105 and 147 are considered. 

The force distribution Pn (with n = 1, …, N) can be determined issuing from the analysis of 
PR shape. The force values Pn (of which sum equals to PNL) are described by the sine function with 
the amplitude APr and the period TP = 2N – 1, where the amplitude APr can be calculated basing on 
the PR values and Eq. (8). 

As a result, Fig. 7 shows the force distributions Pnr reconstructed using the analysis of Moiré 
patterns depicted in Fig. 2. The root mean square error, i.e. the discrepancy between the Pnr and Pnt 
values remains acceptable for all of the reference images. Namely, we have the absolute error RР = 1.5 
and the relative error εP = 1.8%. Different panels of Fig. 7 illustrate the following specific cases: 
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(a) the shape S3, r
NLP  = 105.3, and APr = 0.66; (b) the shape S1, r

NLP  = 107, and APr = 0.09; (c) the 

shape S2, r
NLP  = 102.4, and APr = –0.63; (d) a new shape similar to S2, r

NLP  = 100.7, and  
APr = –0.99. Here n is the number of concentrated forces. In particular, the relative Pnr error is 
εP = 1.6% for the reference images (see panels a, b and c in Fig. 7) and it becomes only slightly 
higher (εP = 3.1%) for the test image of Fig. 7d. 

     (a)      (b) 

     (c)      (d) 

Fig. 7. Theoretical (Pnt) and reconstructed (Pnr) force distributions as functional dependences. The distributions 
are obtained basing on both the reference Moiré patterns (see Fig. 2b) and the test Moiré pattern for the cases 
of PNL = 105 and various shapes (S1, S2 and S3). 

It is important that a satisfactory agreement between the reconstructed (Pnr) and theoretical 
(Pnt) forces has been obtained not only for the reference images and the distribution shapes S1, S2 
and S3, but also for the test image with a new distribution shape (see Fig. 7d). The root mean 
square deviation between the Pnr and Pnt values for the test image (PNL = 21, ..., 147) is quite 
acceptable: the absolute error amounts to RР = 2.3 and the relative error to εP = 2.7%. This 
confirms the fact that our method is versatile when reconstructing the force distributions with 
various shapes. 

Finally, we have estimated a sum of residual forces r
NLP  and a possible force distribution Pnr 

(see Fig. 8b), using our method and analyzing the experimental Moiré pattern obtained in Ref. [15] 

(see Fig. 8a). The obtained sum of forces, r
NLP  = 43.7, is close to the data derived with the 

independent method [25] (PNL = 41.7), while the relative calculation error for the sum of forces is 
equal to εPL = 4.6%. This testifies correctness and great potentials of our approach to the 
quantitative analysis of Moiré patterns. 
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(a) (b) 

Fig. 8. (a) Experimental Moiré pattern (800×541 pel) caused by residual strains resulted from an indenter on the 
output surface of LLL-interferometer analyzer [15]; (b) reconstructed force distribution (profile) that causes these 
strains and results in the Moiré pattern shown in Fig. 8a. The parameters thus obtained are r

NLP  = 43.7,  
Pd = 0.035 N and APr = 0.75. 

4. Conclusions 
Summarizing the main results of the present work, we state the following. The X-ray Moiré 
intensity distributions depend essentially on both the magnitude and the nature of spatial 
distribution of local forces acting on the surface of LLL-interferometer analyzer. In particular, we 
have revealed that the PR(vr) dependence shows different sensitivities to the nature of force 
distribution in the low-frequency and high-frequency ranges. The approach to analysis of the 
Moiré patterns suggested by us allows determining the total magnitude of active forces and, 
moreover, reconstructing their spatial distribution. 

The total force PNL that causes a particular energy spectrum f can be determined from the 
mean spatial radial frequency Rv  by fitting the dependences PNL( Rv ). The relative error for 
calculating the PNL parameter is acceptable for both the reference (εPL = 1.7%) and experimental 
(εPL = 4.6%) Moiré patterns. 

The spatial distribution of the acting forces Pnr can be determined from the analysis of the 
shape of PR using the energy spectrum f and taking into account the total force PNL. The shape of 
the spatial distribution Pnr is functionally described by sinusoids, whose amplitudes can be 
calculated following from the normalized areas of distributions PR for the two alternative 
frequency ranges. The relationship between the force distribution Pnr and the parameter PR has 
been found after analyzing a set of reference Moiré patterns. 

The method for reconstructing the spatial distributions of concentrated forces Pnr suggested 
in this work can be used to find random forces and corresponding mechanical strains in crystals, 
which are spatially localized along a linear segment and of which values can be fitted by the sine 
function.  
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Анотація. Розвинуто новий підхід до аналізу експериментальних муарових картин, 
одержаних за допомогою LLL-інтерферометра. Радіальні розподіли енергетичних спектрів 
муарових зображень виявляють різну чутливість до джерел локальних механічних 
напружень у низькочастотному та високочастотному діапазонах. Це пропонує нові 
можливості для визначення загальної величини механічних деформацій та реконструкції 
їхнього просторового розподілу в кристалах. 


