Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Raman scattering in glassy Li2B4O7 doped with Er2O3

1Puga P. P., 1Danyliuk P. S,  2Gomonai A. I., 1Rizak H. V., 3Rizak I. M., 1Rizak V. M., 1Puga G. D., 4Kvetková L. and 2Byrov M. M.

1Uzhhorod National University, 54 Voloshyna Street, 88000 Uzhhorod, Ukraine;
2Institute of Electron Physics of the National Academy of Sciences of Ukraine, 21 Universytetska Street, 88017 Uzhhorod, Ukraine
3Non-Profit Foundation for Supporting Education, Science, Scientific, Technological and Innovative Activity, 173/28 Peremohy Street, 88000 Uzhhorod,   Ukraine
4Institute of Material Science of Slovak Academy of Sciences, 47 Watsonova Street, 04001 Košice, Slovak Republic. e-mail: actinate@gmail.com 

Download this article

Abstract. We study Raman scattering spectra for glassy lithium tetraborate with different concentrations of doping erbium ions. Most of the vibrational modes found for the activated Li2B4O7:Er2O3 glasses in the medium-scale range are caused by mixed and normal modes of compound boron–oxygen, erbium–oxygen and lithium–oxygen structural complexes.

Keywords: glassy lithium tetraborate, Er2O3, structural groups, hybridization, tetrahedral groups, trigonal groups, erbium–oxygen groups

PACS: 63.50.-x, 71.20.Eh, 74.25.nd, 78.30.-j
UDC: 535.375.54, 546.273
Ukr. J. Phys. Opt. 19: 211-219
doi: 10.3116/16091833/19/4/211/2018
Received: 24.09.2018

Анотація. Вивчено спектри комбінаційного розсіяння склоподібного тетраборату літію з різними концентраціями легуючих іонів ербію. Більшість вібраційних мод, знайдених для активованих стекол Li2B4O7:Er2O3 у середньомасштабному діапазоні, обумовлено змішаними та нормальними модами складних структурних комплексів бор–кисень, ербій–кисень і літій–кисень.

REFERENCES
  1. Paul G L and Taylor W, 1982. Raman spectrum of Li2B4O7. J. Phys. C: Solid State Phys. 15: l753-1764. doi:10.1088/0022-3719/15/8/021 
  2. Furusawa S, Tange S, Ishibashi Y and Miwa K, 1990. Raman scattering study of lithium diborate (Li2B4O7) single crystal. J. Phys. Soc. Japan. 59: 1825-1830. doi:10.1143/JPSJ.59.1825
  3. Burak Ya V, Dovhiy Ya O and Kityk I V, 1990. Longitudinal-transverse splitting of phonon modes in Li2B4O7 crystals. Zhurn. Prikl.Spectr. 52: 126-128. doi:10.1007/BF00664791
  4. Adamv V T, Berko T J, Ktyk V, Burak Ja V, Dzhala V, Dovgij Ja O and Moroz E, 1992. On phonon spectra of the borate monocrystals. Ukr. Fiz.Zhurn 37: 368-373.
  5. Berko T J, Dovgij Ja O, Kityk I V, Burak Ja V, Dzhala V I and Moroz I E, 1993. Raman spectra of lithium tetraborate monocrystals. Ukr. Fiz.Zhurn. 38: 39-43.
  6. Lopez T, Haro-Poniatowski E, Bosh P, Asomoza M, Gomez R, Massot M and Balkanski M, 1994. Spectroscopic characterization of lithium doped borate glasses. J. Sol-Gel Sci. and Technol. 2: 891-894. doi:10.1007/BF00486371
  7. Li Y and Lan G, 1996. Pressure-induced amorphization study of lithium diborate. J. Phys. Chem. Solids. 57: 1887-1890. doi:10.1016/S0022-3697(96)00081-9
  8. Dergachev M P, Moiseenko V N and Burak Ya V, 2001. Raman scattering in Li2B4O7 crystals with impurities. Opt. Spectrosc. 90: 604-607. doi:10.1134/1.1366746
  9. Vdovin A V, Moiseenko V N, Gorelik V S and Burak Ya V, 2001. Vibrational spectrum of Li2B4O7 crystals. Phys. Solid State. 43: 1584-1589. doi:10.1134/1.1402218
  10. Burak Ya V, Trach I B, Adamiv V T and Teslyuk I M, 2002. Isotope effect in the Raman spectra of Li2B4O7 single crystals. Ukr. Fiz.Zhurn. 47: 923-928.
  11. Gorelik V S, Vdovin A V and Moiseenko V N, 2003. Raman and hyper-Rayleigh scattering of light in lithium tetraborate crystals. Preprint of the Lebedev Physics Institute of Russian Academy of Sciences, No 13, Moscow.
  12. Elalaoui A E, Maillard A and Fontana M D, 2005. Raman scattering and non-linear optical properties in Li2B4O7. J. Phys.: Condens. Matter. 17: 7441-7454. doi:10.1088/0953-8984/17/46/027
  13. Burak Ya V, Adamiv V T and Teslyuk I M, 2006. To the origin of vibrational modes in Raman spectra of Li2B4O7 single crystals. Function Mater. 13: 591-595.
  14. Voronko Yu K, Sobol A A and Shukshin V E, 2013. Raman spectroscopy study of the phase transformations of LiB3O5 and Li2B4O7 during heating and melting. Inorganic Mater. 9: 923-929. doi:10.1134/S0020168513090203
  15. El Batal F H, El Kheshen A A, Azooz M A and Abo-Naf S M, 2008. Gamma ray interaction with lithium diborate glasses containing transition metals ions. Opt. Mater. 30: P. 881-891. doi:10.1016/j.optmat.2007.03.010
  16. Yadav A K and Singh P, 2015. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5: 67583-67609. doi:10.1039/C5RA13043C
  17. Krogh-Moe J, 1962. The crystal structure of lithium diborate, Li2O-2B2O3. Acta Cryst. 15: 190-193. doi:10.1107/S0365110X6200050X
  18. Krogh-Moe J, 1968. Refinement of the crystal structure of lithium diborate, Li2O-2B2O3. Acta Cryst. B. 24: 179-181. doi:10.1107/S0567740868001913
  19. Lorosch J, Couzi M, Pelous J, Vacher R and Levasseur A, 1984. Brillouin and Raman scattering study of borate glasses. J. Non-Cryst. Sol. 69: 1-25.
  20. Shuker R and Gammon R W, 1970. Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25: 222-225. doi:10.1103/PhysRevLett.25.222
  21. Kustov E F, Bandurkin E A, Muravyev E N and Orlovsky V P. Electronic spectra of compounds of rare-earth elements. Moscow: Nauka (1981).
  22. Danilyuk P S, Puga P P, Gomonai A I, Krasilinets V N, Volovich P N and Rizak V M, 2015. X-Ray luminescence and spectroscopic characteristics of Er3+ ions in a glassy lithium tetraborate matrix. Opt. Spectrosc. 118: 924-929. doi:10.1134/S0030400X15060089
  23. Danilyuk P S, Popovich K P, Puga P P, Gomonai A I, Primak N V, Krasilinets V N, Turok I I, Puga G D and Rizak V M, 2014. Optical absorption spectra and energy levels of Er3+ ions in glassy lithium tetraborate matrix. Opt. Spectrosc. 117: 759-763. doi:10.1134/S0030400X14110058
  24. Massot M, Haro E, Oueslati M, Balkanski M, Levasseur A and Menetrier M, 1989. Structural investigation of doped lithium borate glasses. Mater. Sci. Eng. B. 3: 57-63. doi:10.1016/0921-5107(89)90178-5
  25. Lazarev A N, Mirgorodsky A P and Ignatiev I S. Vibrational spectra of complex oxides. Silicates and their analogues. Moscow: Nauka (1975).
  26. Kelly T D, Petrosky J C, McClory J W, Adamiv V T, Burak Y V, Padlyak B V, Teslyuk J M, Lu N, Wang L, Mei W N and Dowben P A, 2014. Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. Frontiers in Phys. (Condens. Matter Phys.). 2: 1-10.
  27. Nakamoto K. IR spectra and Raman spectra of inorganic and coordination compounds. Moscow: Mir (1991).
  28. Moiseenko V N, Vdovin A V and Burak Ya V, 1996. The efficiency of Raman scattering in Li2B4O7 crystals. Opt. Spectrosc. 81: 565-567.
  29. McDevitt N T and Davidson A D, 1966. Infrared lattice spectra of cubic rare earth oxides in the region 700 to 50 cm(-1). J. Opt. Soc. Amer. 56: 636-638. doi:10.1364/JOSA.56.000636
  30. Schaack G and Koningstein J A, 1970. Phonon and electronic Raman spectra of cubic rare-earth oxides and isomorphous yttrium oxide. J. Opt. Soc. Amer. 60: 1110-1115. doi:10.1364/JOSA.60.001110
  31. Tomar R, Kumar P, Kumar A, Kumar A, Kumar P, Pant R P and Asokan K, 2017. Investigations on structural and magnetic properties of Mn doped Er2O3. Solid State Sci. 67: 8-12. doi:10.1016/j.solidstatesciences.2017.03.003
  32. Lejus A M and Michel D, 1977. Raman spectrum of Er2O3 sesquioxide. Phys. Stat. Solidi (b). 84: K105-K108. doi:10.1002/pssb.2220840255
  33. Tucker L A, Carney F J, McMillan P, Lin S H and Eyring L, 1984. Raman and resonance Raman spectroscopy of selected rare-earth sesquioxides. Appl. Spectrosc. 38: 857-860. doi:10.1366/0003702844554657
  34. Yan D, Wu P, Zhang S P, Liang L, Yang F, Pei Y L and Chen S, 2013. Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 114: 193502-1-193502-7. doi:10.1063/1.4831663
  35. Abrashev M V, Todorov N D and Geshev J, 2014. Raman spectra of R2O3 (R - rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. J. Appl. Phys. 116: 103508. doi:10.1063/1.4894775
(c) Ukrainian Journal of Physical Optics