Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Rhodamine 6G and Au–Pd core–shell nanorods: fluorescence enhancement for detection of mercury

1Ekkachai Rammarat, 2Sasiwimon Kraithong, 3Nantanit Wanichacheva, 4Pattanawit Swanglap, 5Witoon Yindeesuk, 6Pattareeya Damrongsak and 7Kitsakorn Locharoenrat

1Department of Physics, Faculty of Science, King Mongkut’s Institute of   Technology Ladkrabang, Bangkok 10520 Thailand;
2Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand; 
3Department of Chemistry, Faculty of Science, Silpakorn University, Nakornpathom 73000 Thailand; 
4Department of Chemistry, Faculty of Science, Silpakorn University, Nakornpathom 73000 Thailand; 
5Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand;
6Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand; 
7Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand; 

Download this article

Abstract. We show that hybrid organic–inorganic particles are efficient for accurate sensing of mercury ions and following up trace amounts of the mercury pollutions spread in the environment. The process of synthesis of a working substance starts from preparation of rhodamine 6G derivative. Then the dye molecules are bound on the surface of Au–Pd core–shell nanorods. Mercury ions with different concentrations are finally attached onto this fluorescence sensor. Fluorescence emission of the sensor is detected with a luminescence spectrophotometer. The experimental results demonstrate that the fluorescence intensity of one of our sensors, a sensor B, is remarkably enhanced when the mercury-ion concentration increases from 0 to 15.5 µM. The limit of detection of the ions is as low as 20.6 nM. The working mechanism of our fluorescence sensor can be explained through the fluorescence-energy transfer and the plasmonic effect associated with spirolactam forms of rhodamine and conducting bimetallic nanoparticles.

Keywords: dyes, nanoparticles, mercury, detection limit

PACS: 33.50.Dq, 78.67.Qa
UDC: 535.371
Ukr. J. Phys. Opt. 19: 191-198
doi: 10.3116/16091833/19/4/191/2018
Received: 13.09.2018

Анотація. Показано, що гібридні органічно–неорганічні частинки ефективні для точного визначення іонів ртуті та подальшого відстеження забруднення ртуттю, яка поширена в навколишньому середовищі. Процес синтезу робочої речовини починається з одержання похідної родаміну 6G. Потім молекули барвника зв'язують на поверхні наностержнів Au–Pd типу ядро–оболонка. Надалі іони ртуті з різними концентраціями налипають на даний датчик флуоресценції. Флуоресцентну емісію датчика реєструють люмінесцентним спектрофотометром. Експериментальні результати показують, що інтенсивність флуоресценції одного з наших датчиків – датчика B – помітно посилюється, якщо концентрація ртутних іонів зростає від 0 до 15,5 мкМ. Межа чутливості виявлення цих іонів досягає 20,6 нм. Робочий механізм датчика флуоресценції пояснюється передаванням флуоресцентної енергії та плазмонним ефектом, пов’язаним зі спіролактамними формами родаміну та провідними біметалічними наночастинками.

REFERENCES
  1. Miao-Miao H, Ai-Feng L, Ying X and Dong-Mei X, 2016. Synthesis and properties of three novel rhodamine-based fluorescence sensors for Hg2+. Chin. Chem. Lett. 27: 989–992. doi:10.1016/j.cclet.2016.03.027
  2. Kai-Hui C, Yi Z, Yuan F, Li-Hong W, Ju-Ying L and Cheng Y, 2013. Rhodamine-pyrene conjugated chemosensors for ratiometric detection of Hg2+ ions: Different sensing behavior between a spirolactone and a spirothiolactone. Dyes and Pigments. 98: 339–346. doi:10.1016/j.dyepig.2013.02.019
  3. Zohreh P, 2018. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system. Ultrasonics–Sonochemistry. 44: 24–35. doi:10.1016/j.ultsonch.2018.02.005
  4. Jingkai N, Bin L, Liming Z, Haifeng Z and Hong J, 2015. A fluorescence turn-on probe based on rhodamine derivative and itsfunctionalized silica material for Hg2+-selective detection. Sensors and Actuators B. 215: 174–180. doi:10.1016/j.snb.2015.03.057
  5. Pandeeswar M, Rohilla S, Ahmad E K, Selvakannan R P, Ylias M S, Chilakapati M, Suresh K B and Thimmaiah G. 2018. SERS and fluorescence-based ultrasensitive detection of mercury in water. Biosensors and Bioelectronics. 100: 556–564. doi:10.1016/j.bios.2017.09.051
  6. Jingkai N, Qiuyan L, Bin L and Liming Z, 2013. A novel fluorescence probe based on rhodamine B derivative for highly selective and sensitive detection of mercury(II) ion in aqueous solution. Sensors and Actuators B. 186: 278–285. doi:10.1016/j.snb.2013.06.011
  7. Yonglei C, Shuyun H, Shenghong Y and Qiaosheng P, 2017. Rhodanine stabilized gold nanoparticles for sensitive and selective detection of mercury (II). Dyes and Pigments. 142: 126–131. doi:10.1016/j.dyepig.2017.03.022
  8. Xuan Z and Ying-Ying Z, 2014. A new fluorescence chemodosimeter for Hg2+-selective detection in aqueous solution based on Hg2+-promoted hydrolysis of rhodamine-glyoxylic acid conjugate. Sensors and Actuators B. 202: 609–614. doi:10.1016/j.snb.2014.05.121
  9. Fanyong Y, Meng W, Donglei C, Ning Y, Yang F, Li C and Ligong C, 2013. New fluorescence and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dyes and Pigments. 98: 42-50. doi:10.1016/j.dyepig.2013.02.002
  10. Lijuan F, Jie S, Yao H, Shaopeng C, Bingxin L, Haixia Z and Changli L, 2015. Conjugated polymer and spirolactam rhodamine-B derivative co-functionalized mesoporous silica nanoparticles as the scaffold for the FRET-based ratiometric sensing of mercury (II) ions. Microporous and Mesoporous Mater. 208: 113–119. doi:10.1016/j.micromeso.2015.01.039
  11. Ajcharapan T, Samran P, Kanoknetr S and Palangpon K, 2018. A thiourea-appended rhodamine chemodosimeter for mercury(II) and its bioimaging application. Spectroch. Acta A: Molec. Biomolec. Spectrosc. 192: 101–107. doi:10.1016/j.saa.2017.10.057
  12. Nikolai I. Georgiev, Margarita D.Dimitrova, Abdullah M.Asirib, Khalid A.Alamry, Vladimir B.Bojinov, 2015. Synthesis, sensor activity and logic behavior of a novel bichromophoric system based on rhodamine 6G and 1,8-naphthalimide. Dyes and Pigments. 15: 172–180. doi:10.1016/j.dyepig.2015.01.001
  13. Kyeong S M, Ramalingam M and Young A S, 2018. Rhodamine-fluorene based dual channel probe for the detection of Hg2+ ions and its application in digital printing. Sensors and Actuators B. 261: 545–552. doi:10.1016/j.snb.2018.01.178
  14. Jiang-Hao H, Shuai H, Xiaoyan W, Min L and Haifei L, 2017. Au–Pt–Au nanoraspberry structures used for mercury ion detection. Opt. Eng. 56: 127104. doi:10.1117/1.OE.56.12.127104
  15. Xin Z, Wei Y, Tong Z, Zhexi T and Xue W, 2013. Rhodamine based derivative and its zinc complex: synthesis and recognition behavior toward Hg(II). Tetrahedron 69: 9535–9539. doi:10.1016/j.tet.2013.09.049
  16. He S, Liu Q, Li Y, Wei F, Cai S, Lu Y and Zeng X, 2014. Rhodamine 6G-based chemosensor for the visual detection of Cu2+ and fluorescence detection of Hg2+ in water. Chem. Res. in Chin. Univ. 30: 32–36. doi:10.1007/s40242-014-3364-z
  17. Yanqing G, Xujiao X, Aikun L, Ruixue J, Shili S and Xiaoqun C, 2017. A novel imidazo[1,5-a] pyridine-rhodamine FRET system as an efficient ratiometric fluorescence probe for Hg2+ in living cells. Dyes and Pigments. 146: 136–142. doi:10.1016/j.dyepig.2017.06.067
  18. Brasca R, Onaindia M C, Goicoechea H C, Pe-a A M and Culzoni M J, 2016. Highly selective and ultrasensitive turn-on luminescence chemosensor for mercury (II) determination based on the rhodamine 6G derivative FC1 and Au nanoparticles. Sensors. 16: 1652. doi:10.3390/s16101652
  19. Wang Y, Wen G, Ye L, Liang A and Jiang Z, 2016. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion. Sci. Rep. 6: 19650. doi:10.1038/srep19650
  20. Hsin-Yun C, Tung-Ming H, Yu-Fen H and Chih-Ching, H. 2011. Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Envir. Sci. & Technol. 45: 1534–1539. doi:10.1021/es103369d
  21. Josiane P L, Thomas G J and Jorg P K, Gold nanoparticle-based microfluidic sensor for mercury detection. 15th Int. Conf. on Miniaturized Syst. for Chemistry and Life Sciences. Washington, USA, 2–6 October 2011; p. 1317.
  22. Lavín A, de Vicente J, Holgado M, Laguna M F, Casquel R, Santamaría B, Maigler M V, Hernández A L and Ramírez Y, 2018. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors. 38: 2038. doi:10.3390/s18072038
  23. United States Environmental Protection Agency. Available online: https://www.scribd.com/document/21847260/United-States-Environmental-Protection-Agency (accessed on 25 July 2018).
(c) Ukrainian Journal of Physical Optics