Home
page
Other articles
in this issue |
Rhodamine 6G and
Au–Pd core–shell nanorods: fluorescence enhancement for detection of
mercury
1Ekkachai Rammarat, 2Sasiwimon
Kraithong, 3Nantanit Wanichacheva, 4Pattanawit Swanglap,
5Witoon
Yindeesuk, 6Pattareeya Damrongsak and 7Kitsakorn
Locharoenrat
1Department of Physics, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok
10520 Thailand;
2Department of Chemistry, Faculty of Science,
Chulalongkorn University, Bangkok 10330 Thailand;
3Department of Chemistry, Faculty of Science,
Silpakorn University, Nakornpathom 73000 Thailand;
4Department of Chemistry, Faculty of Science,
Silpakorn University, Nakornpathom 73000 Thailand;
5Department of Physics, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand;
6Biomedical Physics Research Unit, Department
of Physics, Faculty of Science, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520 Thailand;
7Biomedical Physics Research Unit, Department
of Physics, Faculty of Science, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520 Thailand;
Download this
article
Abstract. We show that hybrid organic–inorganic particles are
efficient for accurate sensing of mercury ions and following up trace amounts
of the mercury pollutions spread in the environment. The process of synthesis
of a working substance starts from preparation of rhodamine 6G derivative.
Then the dye molecules are bound on the surface of Au–Pd core–shell
nanorods. Mercury ions with different concentrations are finally attached
onto this fluorescence sensor. Fluorescence emission of the sensor is detected
with a luminescence spectrophotometer. The experimental results demonstrate
that the fluorescence intensity of one of our sensors, a sensor B, is remarkably
enhanced when the mercury-ion concentration increases from 0 to 15.5 µM.
The limit of detection of the ions is as low as 20.6 nM. The working mechanism
of our fluorescence sensor can be explained through the fluorescence-energy
transfer and the plasmonic effect associated with spirolactam forms of
rhodamine and conducting bimetallic nanoparticles.
Keywords: dyes, nanoparticles, mercury, detection
limit
PACS: 33.50.Dq, 78.67.Qa
UDC: 535.371
Ukr. J. Phys. Opt.
19: 191-198
doi: 10.3116/16091833/19/4/191/2018
Received: 13.09.2018
Анотація. Показано, що гібридні
органічно–неорганічні частинки ефективні
для точного визначення іонів ртуті та подальшого
відстеження забруднення ртуттю, яка поширена
в навколишньому середовищі. Процес синтезу
робочої речовини починається з одержання
похідної родаміну 6G. Потім молекули барвника
зв'язують на поверхні наностержнів Au–Pd
типу ядро–оболонка. Надалі іони ртуті
з різними концентраціями налипають на
даний датчик флуоресценції. Флуоресцентну
емісію датчика реєструють люмінесцентним
спектрофотометром. Експериментальні результати
показують, що інтенсивність флуоресценції
одного з наших датчиків – датчика B – помітно
посилюється, якщо концентрація ртутних
іонів зростає від 0 до 15,5 мкМ. Межа чутливості
виявлення цих іонів досягає 20,6 нм. Робочий
механізм датчика флуоресценції пояснюється
передаванням флуоресцентної енергії та
плазмонним ефектом, пов’язаним зі спіролактамними
формами родаміну та провідними біметалічними
наночастинками. |
|
REFERENCES
-
Miao-Miao H, Ai-Feng L, Ying X and Dong-Mei X, 2016. Synthesis and properties
of three novel rhodamine-based fluorescence sensors for Hg2+. Chin. Chem.
Lett. 27: 989–992. doi:10.1016/j.cclet.2016.03.027
-
Kai-Hui C, Yi Z, Yuan F, Li-Hong W, Ju-Ying L and Cheng Y, 2013. Rhodamine-pyrene
conjugated chemosensors for ratiometric detection of Hg2+ ions: Different
sensing behavior between a spirolactone and a spirothiolactone. Dyes and
Pigments. 98: 339–346. doi:10.1016/j.dyepig.2013.02.019
-
Zohreh P, 2018. Electrospun nanofibers decorated with bio-sonochemically
synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based
mercury (II) detection system. Ultrasonics–Sonochemistry. 44: 24–35.
doi:10.1016/j.ultsonch.2018.02.005
-
Jingkai N, Bin L, Liming Z, Haifeng Z and Hong J, 2015. A fluorescence
turn-on probe based on rhodamine derivative and itsfunctionalized silica
material for Hg2+-selective detection. Sensors and Actuators B. 215: 174–180.
doi:10.1016/j.snb.2015.03.057
-
Pandeeswar M, Rohilla S, Ahmad E K, Selvakannan R P, Ylias M S, Chilakapati
M, Suresh K B and Thimmaiah G. 2018. SERS and fluorescence-based ultrasensitive
detection of mercury in water. Biosensors and Bioelectronics. 100: 556–564.
doi:10.1016/j.bios.2017.09.051
-
Jingkai N, Qiuyan L, Bin L and Liming Z, 2013. A novel fluorescence probe
based on rhodamine B derivative for highly selective and sensitive detection
of mercury(II) ion in aqueous solution. Sensors and Actuators B. 186: 278–285.
doi:10.1016/j.snb.2013.06.011
-
Yonglei C, Shuyun H, Shenghong Y and Qiaosheng P, 2017. Rhodanine stabilized
gold nanoparticles for sensitive and selective detection of mercury (II).
Dyes and Pigments. 142: 126–131. doi:10.1016/j.dyepig.2017.03.022
-
Xuan Z and Ying-Ying Z, 2014. A new fluorescence chemodosimeter for Hg2+-selective
detection in aqueous solution based on Hg2+-promoted hydrolysis of rhodamine-glyoxylic
acid conjugate. Sensors and Actuators B. 202: 609–614. doi:10.1016/j.snb.2014.05.121
-
Fanyong Y, Meng W, Donglei C, Ning Y, Yang F, Li C and Ligong C, 2013.
New fluorescence and colorimetric chemosensors based on the rhodamine detection
of Hg2+ and Al3+ and application of imaging in living cells. Dyes and Pigments.
98: 42-50. doi:10.1016/j.dyepig.2013.02.002
-
Lijuan F, Jie S, Yao H, Shaopeng C, Bingxin L, Haixia Z and Changli L,
2015. Conjugated polymer and spirolactam rhodamine-B derivative co-functionalized
mesoporous silica nanoparticles as the scaffold for the FRET-based ratiometric
sensing of mercury (II) ions. Microporous and Mesoporous Mater. 208: 113–119.
doi:10.1016/j.micromeso.2015.01.039
-
Ajcharapan T, Samran P, Kanoknetr S and Palangpon K, 2018. A thiourea-appended
rhodamine chemodosimeter for mercury(II) and its bioimaging application.
Spectroch. Acta A: Molec. Biomolec. Spectrosc. 192: 101–107. doi:10.1016/j.saa.2017.10.057
-
Nikolai I. Georgiev, Margarita D.Dimitrova, Abdullah M.Asirib, Khalid A.Alamry,
Vladimir B.Bojinov, 2015. Synthesis, sensor activity and logic behavior
of a novel bichromophoric system based on rhodamine 6G and 1,8-naphthalimide.
Dyes and Pigments. 15: 172–180. doi:10.1016/j.dyepig.2015.01.001
-
Kyeong S M, Ramalingam M and Young A S, 2018. Rhodamine-fluorene based
dual channel probe for the detection of Hg2+ ions and its application in
digital printing. Sensors and Actuators B. 261: 545–552.
doi:10.1016/j.snb.2018.01.178
-
Jiang-Hao H, Shuai H, Xiaoyan W, Min L and Haifei L, 2017. Au–Pt–Au
nanoraspberry structures used for mercury ion detection. Opt. Eng. 56:
127104.
doi:10.1117/1.OE.56.12.127104
-
Xin Z, Wei Y, Tong Z, Zhexi T and Xue W, 2013. Rhodamine based derivative
and its zinc complex: synthesis and recognition behavior toward Hg(II).
Tetrahedron 69: 9535–9539. doi:10.1016/j.tet.2013.09.049
-
He S, Liu Q, Li Y, Wei F, Cai S, Lu Y and Zeng X, 2014. Rhodamine 6G-based
chemosensor for the visual detection of Cu2+ and fluorescence detection
of Hg2+ in water. Chem. Res. in Chin. Univ. 30: 32–36. doi:10.1007/s40242-014-3364-z
-
Yanqing G, Xujiao X, Aikun L, Ruixue J, Shili S and Xiaoqun C, 2017. A
novel imidazo[1,5-a] pyridine-rhodamine FRET system as an efficient ratiometric
fluorescence probe for Hg2+ in living cells. Dyes and Pigments. 146: 136–142.
doi:10.1016/j.dyepig.2017.06.067
-
Brasca R, Onaindia M C, Goicoechea H C, Pe-a A M and Culzoni M J, 2016.
Highly selective and ultrasensitive turn-on luminescence chemosensor for
mercury (II) determination based on the rhodamine 6G derivative FC1 and
Au nanoparticles. Sensors. 16: 1652. doi:10.3390/s16101652
-
Wang Y, Wen G, Ye L, Liang A and Jiang Z, 2016. Label-free SERS study of
galvanic replacement reaction on silver nanorod surface and its application
to detect trace mercury ion. Sci. Rep. 6: 19650. doi:10.1038/srep19650
-
Hsin-Yun C, Tung-Ming H, Yu-Fen H and Chih-Ching, H. 2011. Using rhodamine
6G-modified gold nanoparticles to detect organic mercury species in highly
saline solutions. Envir. Sci. & Technol. 45: 1534–1539. doi:10.1021/es103369d
-
Josiane P L, Thomas G J and Jorg P K, Gold nanoparticle-based microfluidic
sensor for mercury detection. 15th Int. Conf. on Miniaturized Syst. for
Chemistry and Life Sciences. Washington, USA, 2–6 October 2011; p. 1317.
-
Lavín A, de Vicente J, Holgado M, Laguna M F, Casquel R, Santamaría B,
Maigler M V, Hernández A L and Ramírez Y, 2018. On the determination
of uncertainty and limit of detection in label-free biosensors. Sensors.
38: 2038. doi:10.3390/s18072038
-
United States Environmental Protection Agency. Available online: https://www.scribd.com/document/21847260/United-States-Environmental-Protection-Agency
(accessed on 25 July 2018).
(c) Ukrainian Journal
of Physical Optics |