Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Compact arrayed waveguide gratings for visible wavelengths based on silicon nitride

Syed Ashar Ali and Sang Jeen Hong

Department of Electronics Engineering & MPEES, Myongji University, Korea, samhong@mju.ac.kr

Download this article

Abstract. We present two arrayed silicon-nitride-cored waveguide gratings (AWGs) that operate in a broad visible-wavelength range (400–800 nm), with the central wavelength 777 nm. Our Si3N4-cored AWGs are designed to satisfy single-mode waveguide characteristics. They reveal a typical propagation loss 0.1 dB/cm and a bending loss 0.1 dB at the bending angle 90o. One of our AWGs provides five wavelength channels with the bandwidth 15 nm at level of 3 dB, while the other is suited for eight wavelength channels with an improved 3 dB bandwidth amounting to 4 nm. The insertion losses for the both AWGs at the peak of the transmission spectrum are equal to 7.56 dB/cm. Moreover, our AWGs reveal good spectral characteristics and small enough sizes (0.02 and 0.20 mm2 for the five- and eight-channel AWGs, respectively).

Keywords: arrayed waveguide gratings, silicon-nitride waveguides, waveguides for the visible wavelengths

PACS: 42.82.Et
UDC: 535
Ukr. J. Phys. Opt. 18 239-248
doi: 10.3116/16091833/18/4/239/2017
Received: 31.10.2017

Анотація. Ми представляємо дві кремнієво-нітридові хвилеводні ґратки (ХҐ), які працюють у широкому видимому діапазоні довжин хвиль 400 – 800 нм на центральній довжині хвилі 777 нм. ХҐ із серцевинами Si3N4 сконструйовано так, аби забезпечити характеристики одномодового режиму хвилеводу. Вони виявляють типові втрати поширення 0,1 дБ/см і втрати на згинах 0,1 дБ при куті згину 90°. Одна з наших ХҐ забезпечує п’ять каналів із шириною смуги пропускання 15 нм на рівні 3 дБ, а інша – вісім каналів із поліпшеною смугою пропускання 4 нм на рівні 3 дБ. Втрати на введення для обох ХҐ дорівнюють 7,56 Б/см на піку спектра пропускання. Крім того, наші ХҐ виявляють хороші спектральні характеристики і досить малі розміри (0,02 і 0,20 мм2 відповідно для п’яти- та восьмиканальної ХҐ).

REFERENCES
  1. Takahashi H, Suzuki S, Kato K and Nishi I, 1990. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron. Lett. 26: 87–88. doi:10.1049/el:19900058
  2. Dragone C, 1991. An N*N optical multiplexer using a planar arrangement of two-star couplers. EEE Photon. Technol. Lett. 3: 812–815. doi:10.1109/68.84502
  3. Ryckeboer E, Gassenq A, Muneeb M, Hattasan N, Pathak S, Cerutti L, Rodriguez J B, Tournié E, Bogaerts W, Baets R and Roelkens G, 2013. Silicon-on-insulator spectrometers with inte-grated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express. 21: 6101–6108. doi:10.1364/OE.21.006101
  4. Piels M, Bauters J F, Davenport M L, Heck M J and Bowers J E, 2014. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J. Lightwave Technol. 32: 817–823. doi:10.1109/JLT.2013.2286320
  5. Kodate K and Komai Y, 2008. Compact spectroscopic sensor using an arrayed waveguide grating. J. Optics A: Pure Appl. Opt. 10: 044011. doi:10.1088/1464-4258/10/4/044011
  6. Gatkine P, Veilleux S, Hu Y., Bland-Hawthorn J and Dagenais M, 2017. Arrayed waveguide grating spectrometers for astronomical applications: new results. Opt. Express. 25: 17918–17935. doi:10.1364/OE.25.017918
  7. Barbarin Y, Lefrançois A, Magne S, Chuzeville V, Balbarie M, Jacquet L, Sinatti F, Osmont A and Luc J, 2017, Dynamic measurements of physical quantities in extreme environment using fiber Bragg grating. In: 25th Optical Fiber Sensors IEEE Conference, 2017. pp. 1–4.
  8. Cheben P, Schmid J H, Delâge A, Densmore A, Janz S, Lamontagne B, Lapointe J, Post E, Waldron P and Xu D X, 2007. A high-resolution silicon-on-insulator arrayed waveguide rating microspectrometer with sub-micrometer aperture waveguides. Opt. Express. 15: 2299–2306. doi:10.1364/OE.15.002299
  9. Okamoto K, Moriwaki K and Suzuki S, 1995. Fabrication of 64*64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett. 31: 184–186. doi:10.1049/el:19950133
  10. Diemeer J, Ramsamoedj R and Smit K, 1996. Polymeric phased array wavelength multiplexer operating around 1550 nm. Electron. Lett. 32: 1132–1133. doi:10.1049/el:19960736
  11. Martens D, Subramanian A Z, Pathak S, Vanslembrouck M, Bienstman P, Bogaerts W and Baets R, 2015. Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths. IEEE Photon. Technol. Lett. 27: 137–140. doi:10.1109/LPT.2014.2363298
  12. Rahim A, Ryckeboer E, Subramanian A Z, Clemmen S, Kuyken B, Dhakal A, Raza A, Hermans A, Muneeb M, Dhoore S and Li Y, 2017. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 35: 639–649. doi:10.1109/JLT.2016.2617624
  13. Suzuki K, Hida Y, Shibata T, Inoue Y, Takahashi H and Okamoto K, 2006. Silica-based arrayed-waveguide gratings for the visible wavelength range. NTT Tech. Rev. 4: 48–52.
  14. Poenar D P, Kee J S, Neuzil P and Yobas L, 2009. The design and fabrication of poly (dimethylsiloxane) single mode rib waveguides for lab-on-a-chip applications. In: Advanced Materials Research (Trans Tech Publications). 74: 51–54.
  15. Kee J S, Poenar D P, Neužil P, Yobaş L and Chen Y, 2010. Design and fabrication of Poly (dimethylsiloxane) arrayed waveguide grating. Opt. Express. 18: 21732–21742. doi:10.1364/OE.18.021732
  16. Hwang S, Lee M, Kim S and Hong S, 2017. Characterization of silicon nitride-cored silicon photonics waveguide material for optical microring resonator. J. Nanoelectron. Optoelectron. (at press).
  17. Stanton E J, Spott A, Davenport M L, Volet N and Bowers J E, 2016, June. Arrayed waveguide grating near 760 nm wavelength for integrated spectral beam combining applica-tions. In: Lasers and Electro-Optics IEEE Conference, 2016. pp. 1–2. doi:10.1364/CLEO_SI.2016.SM1F.1
  18. Hwang S, Lee M, Kim S and Hong S, 2017. Characterization of silicon nitride-cored silicon photonics waveguide material for optical microring resonator. J. Nanoelectron. Optoelectron. (at press).
  19. Elndash A, Mohammed N A, Rashed A N Z, Elndash A and Saad F A, 2009. Estimated optimization parameters of arrayed waveguide grating (AWG) for C-band applications. Int. J. Phys. Sci. 4: 149–155.
(c) Ukrainian Journal of Physical Optics