Home
page
Other articles
in this issue |
Compact arrayed waveguide
gratings for visible wavelengths based on silicon nitride
Syed Ashar Ali and Sang Jeen Hong
Department of Electronics Engineering & MPEES, Myongji
University, Korea, samhong@mju.ac.kr
Download this
article
Abstract. We present two arrayed silicon-nitride-cored waveguide
gratings (AWGs) that operate in a broad visible-wavelength range (400–800
nm), with the central wavelength 777 nm. Our Si3N4-cored AWGs are designed
to satisfy single-mode waveguide characteristics. They reveal a typical
propagation loss 0.1 dB/cm and a bending loss 0.1 dB at the bending angle
90o. One of our AWGs provides five wavelength channels with the bandwidth
15 nm at level of 3 dB, while the other is suited for eight wavelength
channels with an improved 3 dB bandwidth amounting to 4 nm. The insertion
losses for the both AWGs at the peak of the transmission spectrum are equal
to 7.56 dB/cm. Moreover, our AWGs reveal good spectral characteristics
and small enough sizes (0.02 and 0.20 mm2 for the five- and eight-channel
AWGs, respectively).
Keywords: arrayed waveguide gratings, silicon-nitride
waveguides, waveguides for the visible wavelengths
PACS: 42.82.Et
UDC: 535
Ukr. J. Phys. Opt.
18 239-248
doi: 10.3116/16091833/18/4/239/2017
Received: 31.10.2017
Анотація. Ми представляємо дві кремнієво-нітридові
хвилеводні ґратки (ХҐ), які працюють у широкому
видимому діапазоні довжин хвиль 400 – 800
нм на центральній довжині хвилі 777 нм. ХҐ
із серцевинами Si3N4 сконструйовано так,
аби забезпечити характеристики одномодового
режиму хвилеводу. Вони виявляють типові
втрати поширення 0,1 дБ/см і втрати на згинах
0,1 дБ при куті згину 90°. Одна з наших ХҐ забезпечує
п’ять каналів із шириною смуги пропускання
15 нм на рівні 3 дБ, а інша – вісім каналів
із поліпшеною смугою пропускання 4 нм на
рівні 3 дБ. Втрати на введення для обох ХҐ
дорівнюють 7,56 Б/см на піку спектра пропускання.
Крім того, наші ХҐ виявляють хороші спектральні
характеристики і досить малі розміри (0,02
і 0,20 мм2 відповідно для п’яти- та восьмиканальної
ХҐ). |
|
REFERENCES
-
Takahashi H, Suzuki S, Kato K and Nishi I, 1990. Arrayed-waveguide grating
for wavelength division multi/demultiplexer with nanometre resolution.
Electron. Lett. 26: 87–88. doi:10.1049/el:19900058
-
Dragone C, 1991. An N*N optical multiplexer using a planar arrangement
of two-star couplers. EEE Photon. Technol. Lett. 3: 812–815. doi:10.1109/68.84502
-
Ryckeboer E, Gassenq A, Muneeb M, Hattasan N, Pathak S, Cerutti L, Rodriguez
J B, Tournié E, Bogaerts W, Baets R and Roelkens G, 2013. Silicon-on-insulator
spectrometers with inte-grated GaInAsSb photodiodes for wide-band spectroscopy
from 1510 to 2300 nm. Opt. Express. 21: 6101–6108. doi:10.1364/OE.21.006101
-
Piels M, Bauters J F, Davenport M L, Heck M J and Bowers J E, 2014. Low-loss
silicon nitride AWG demultiplexer heterogeneously integrated with hybrid
III–V/silicon photodetectors. J. Lightwave Technol. 32: 817–823. doi:10.1109/JLT.2013.2286320
-
Kodate K and Komai Y, 2008. Compact spectroscopic sensor using an arrayed
waveguide grating. J. Optics A: Pure Appl. Opt. 10: 044011. doi:10.1088/1464-4258/10/4/044011
-
Gatkine P, Veilleux S, Hu Y., Bland-Hawthorn J and Dagenais M, 2017. Arrayed
waveguide grating spectrometers for astronomical applications: new results.
Opt. Express. 25: 17918–17935. doi:10.1364/OE.25.017918
-
Barbarin Y, Lefrançois A, Magne S, Chuzeville V, Balbarie M, Jacquet L,
Sinatti F, Osmont A and Luc J, 2017, Dynamic measurements of physical quantities
in extreme environment using fiber Bragg grating. In: 25th Optical Fiber
Sensors IEEE Conference, 2017. pp. 1–4.
-
Cheben P, Schmid J H, Delâge A, Densmore A, Janz S, Lamontagne B, Lapointe
J, Post E, Waldron P and Xu D X, 2007. A high-resolution silicon-on-insulator
arrayed waveguide rating microspectrometer with sub-micrometer aperture
waveguides. Opt. Express. 15: 2299–2306. doi:10.1364/OE.15.002299
-
Okamoto K, Moriwaki K and Suzuki S, 1995. Fabrication of 64*64 arrayed-waveguide
grating multiplexer on silicon. Electron. Lett. 31: 184–186. doi:10.1049/el:19950133
-
Diemeer J, Ramsamoedj R and Smit K, 1996. Polymeric phased array wavelength
multiplexer operating around 1550 nm. Electron. Lett. 32: 1132–1133.
doi:10.1049/el:19960736
-
Martens D, Subramanian A Z, Pathak S, Vanslembrouck M, Bienstman P, Bogaerts
W and Baets R, 2015. Compact silicon nitride arrayed waveguide gratings
for very near-infrared wavelengths. IEEE Photon. Technol. Lett. 27: 137–140.
doi:10.1109/LPT.2014.2363298
-
Rahim A, Ryckeboer E, Subramanian A Z, Clemmen S, Kuyken B, Dhakal A, Raza
A, Hermans A, Muneeb M, Dhoore S and Li Y, 2017. Expanding the silicon
photonics portfolio with silicon nitride photonic integrated circuits.
J. Lightwave Technol. 35: 639–649. doi:10.1109/JLT.2016.2617624
-
Suzuki K, Hida Y, Shibata T, Inoue Y, Takahashi H and Okamoto K, 2006.
Silica-based arrayed-waveguide gratings for the visible wavelength range.
NTT Tech. Rev. 4: 48–52.
-
Poenar D P, Kee J S, Neuzil P and Yobas L, 2009. The design and fabrication
of poly (dimethylsiloxane) single mode rib waveguides for lab-on-a-chip
applications. In: Advanced Materials Research (Trans Tech Publications).
74: 51–54.
-
Kee J S, Poenar D P, Neužil P, Yobaş L and Chen Y, 2010. Design and fabrication
of Poly (dimethylsiloxane) arrayed waveguide grating. Opt. Express. 18:
21732–21742. doi:10.1364/OE.18.021732
-
Hwang S, Lee M, Kim S and Hong S, 2017. Characterization of silicon nitride-cored
silicon photonics waveguide material for optical microring resonator. J.
Nanoelectron. Optoelectron. (at press).
-
Stanton E J, Spott A, Davenport M L, Volet N and Bowers J E, 2016, June.
Arrayed waveguide grating near 760 nm wavelength for integrated spectral
beam combining applica-tions. In: Lasers and Electro-Optics IEEE Conference,
2016. pp. 1–2. doi:10.1364/CLEO_SI.2016.SM1F.1
-
Hwang S, Lee M, Kim S and Hong S, 2017. Characterization of silicon nitride-cored
silicon photonics waveguide material for optical microring resonator. J.
Nanoelectron. Optoelectron. (at press).
-
Elndash A, Mohammed N A, Rashed A N Z, Elndash A and Saad F A, 2009. Estimated
optimization parameters of arrayed waveguide grating (AWG) for C-band applications.
Int. J. Phys. Sci. 4: 149–155.
(c) Ukrainian Journal
of Physical Optics |