Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Structure and optical anisotropy of K1.75(NH4)0.25SO4 solid solution

1,2Shchepanskyi P.A., 1Kushnir O.S., 1Stadnyk V.Yo., 3Fedorchuk A.O., 1,2Rudysh M.Ya., 1Brezvin R.S., 1Demchenko P.Yu. and 4Krymus A.S.

1Ivan Franko National University of Lviv, 8 Kyrylo and Mefodiy Street, 79005  Lviv, Ukraine
2J. Dlugosz Academy of Czestochowa, Armii Krajowej 13/15, PL-42-201 Czestochowa, Poland
3Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska  Street, 79010 Lviv, Ukraine
4Eastern European National University, 13 Volya Avenue, 43025 Lutsk, Ukraine

Download this article

Abstract. In this work we have grown single crystals Kx(NH4)2–xSO4 (x»1.75), which belong to a potassium–ammonium sulfate family, and studied their room–temperature structure. Spectral dependences of the principal refractive indices and principal optical birefringences are measured in the visible region. Anomalous birefringence dispersion is observed along the light propagation direction parallel to the principal x axis. According to our birefringence extrapolation based on the Sellmeier fit for the refractive indices, the symmetry of optical indicatrix at the room temperature should increase at the light wavelength λIP»1350±60 nm. This corresponds to a specific ‘isotropic point’ defined by the condition nxIP) = nyIP), which has not been detected in either K2SO4 or (NH4)2SO4 crystals.

Keywords: potassium–ammonium sulfate, crystal structure, refractive indices, optical anisotropy, birefringence, dispersion, isotropic point

PACS: 78.20.Ci, 78.20.Hp, 81.40.Vw
UDC: 535.323, 535.5, 535.012, 548.0
Ukr. J. Phys. Opt. 18 187-196
doi: 10.3116/16091833/18/4/187/2017
Received: 20.07.2017 

Анотація. У цій роботі вирощено монокристали Kx(NH4)2–xSO4 (x»1.75), які належать до родини сульфату калію–амонію, а також вивчено їхню структуру за кімнатної температури. Досліджено спектральні залежності головних показників заломлення та головних оптичних двопроменезаломлень у видимій області. Вздовж напрямку розповсюдження світла паралельно до головної осі х спостерігаємо аномальну дисперсію подвійного променезаломлення. Відповідно до екстраполяції подвійного променезаломлення на основі апроксимації Зельмеєра показників заломлення, симетрія оптичної індикатриси за кімнатної температури повинна підвищитися на довжині світлової хвилі λIP»1350±60 нм. Це відповідає специфічній «ізотропній точці», визначеній умовою nxIP) = nyIP). Цю точку досі не було виявлено ні в кристалах K2SO4 ні в (NH4)2SO4 K2SO4.
 

REFERENCES
  1. Wardzynski W, 1961. Dichroism and birefringence of single crystals of cadmium selenide. Proc. Roy. Soc. A. 260: 370–378. doi:10.1098/rspa.1961.0039
  2. Bieniewski T M and Czyzak S J, 1963. Refractive indexes of single hexagonal ZnS and CdS crystals. J. Opt. Soc. Amer. 53: 496–497. doi:10.1364/JOSA.53.000496 
  3. Hopfield J J and Thomas D G, 1965. Polariton absorption lines. Phys. Rev. Lett. 15: 22–24. doi:10.1103/PhysRevLett.15.22
  4. Henry C H, 1966. Coupling of electromagnetic waves in CdS. Phys. Rev. 143: 627–633. doi:10.1103/PhysRev.143.627
  5. Hobden M V, 1967. Optical activity in a non-enantiomorphous crystal silver gallium sulphide. Nature. 216: 678. doi:10.1038/216678a0
  6. May M, Debrus S, Amzallag J and Hui X-M, 1992. Natural optical activity and the anisotropic absorbing properties of CdGa2S4. J. Opt. Soc. Amer. A. 9: 1412–1418. doi:10.1364/JOSAA.9.001412
  7. Kushnir O and Vlokh O, 1995. Propagation of light in birefringent optically active crystals possessing linear dichroism. Proc. SPIE. 2648: 585–595. doi:10.1117/12.226230
  8. Kushnir O S, Dzendzelyuk O S, Hrabovskyy V A and Vlokh O G, 2004. Optical transmittance of dichroic crystals with “isotropic point”. Ukr. J. Phys. Opt. 5: 1–5. doi: doi:10.3116/16091833/5/1/1/2004
  9. Glazer A M, Zhang N, Bartasyte A, Keeble D S, Huband S and Thomas P A, 2010. Observation of unusual temperature-dependent stripes in LiTaO3 and LiTaxNb1–xO3 crystals with near-zero birefringence. J. Appl. Cryst. 43: 1305–1313. doi:10.1107/S0021889810033868
  10. Glazer A M, Zhang N, Bartasyte A, Keeble D S, Huband S, Thomas P A, Gregora I, Borodavka F, Marguerone S and Hlinka J, 2012. LiTaO3 crystals with near-zero birefringence. J. Appl. Cryst. 45: 1030–1037. doi:10.1107/S0021889812035121
  11. Yariv A and Yeh P. Optical waves in crystals: propagation and control of laser radiation. New York: Wiley (2003).
  12. Laurenti J P, Rustagi K C and Rouzeyre M, 1976. Optical filters using coupled light waves in mixed crystals. Appl. Phys. Lett. 28: 212–213.  doi:10.1063/1.88700
  13. Romanyuk M O, Andriyevsky B, Kostetsky O, Romanyuk M M and Stadnyk V, 2002. Crystal optical method for temperature measuring. Condens. Matter Phys. 5: 579–586. doi:10.5488/CMP.5.3.579
  14. Romanyuk M O and Romanyuk M M, 2005. Inversion of the sign of birefringence and its application in thermometry. Ferroelectrics. 317: 57–61. doi:10.1080/00150190590963444
  15. Bäumer Ch, Berben D, Buse K, Hesse H and Imbrock J, 2003. Determination of the composition of lithium tantalate crystals by zero-birefringence measurements. Appl. Phys. Lett. 82: 2248–2250. doi:10.1063/1.1566100
  16. Kushnir O S, Grabovski V A, Dzendzelyuk O S and Lutsiv-Shumski L P, 2000. Light propagation in wurtzite-type crystals with the Jones calculus. Proc. SPIE. 4148: 123–128. doi:10.1117/12.388433  
  17. Wood I G, Daniels P, Brown R H and Glazer A M, 2008. Optical birefringence study of the ferroelectric phase transition in lithium niobate tantalate mixed crystals: LiNb1−xTaxO3. J. Phys.: Condens. Matter. 20: 235237. doi:10.1088/0953-8984/20/23/235237
  18. Stadnyk V Yo, Brezvin R S, Rudysh M Ya, Shchepanskyi P A, Gaba V M and Kogut Z A, 2014. On isotropic states in α-LiNH4SO4 crystals. Opt. Spectrosc. 117: 756–758. doi:10.1134/S0030400X14110216
  19. Rudysh M Ya, Brik M G, Khyzhun O Y, Fedorchuk A O, Kityk I V, Shchepanskyi P A, Stadnyk V Yo, Lakshminarayana G, Brezvin R S, Bak Z and Piasecki M, 2017. Ionicity and birefringence of α-LiNH4SO4 crystals: ab initio DFT study, X-ray spectroscopy measurements. RSC Adv. 7: 6889–6901. doi:10.1039/C6RA27386F  
  20. Huband S, Keeble D S, Zhang N, Glazer A M, Bartasytee A and Thomas P A, 2017. Crystallographic and optical study of LiNb1−xTaxO3. Acta Cryst. B. 73: 498–506. doi:10.1107/S2052520617004711
  21. Stadnyk V Yo, Romanyuk M O, Chyzh O Z and Vachulovych V F, 2007. The baric changes of the refractive properties of K2SO4 crystals. Condens. Matter Phys. 10: 45–50. doi:10.5488/CMP.10.1.45
  22. El-Korashy A, El-Zahed H and Radwan M, 2003. Optical studies of (NH4)2SO4 single crystal in the paraelectric phase. J. Phys. Chem. Solids. 64: 2141–2146. doi:10.1016/S0022-3697(03)00132-X
  23. Lloveras P, Stern-Taulats E, Barrio M, Tamarit J-Ll, Crossley S, Li W, Pomjakushin V, Planes A, Mañosa Ll, Mathur N D and Moya X, 2015. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nature Commun. 6: 8801. doi:10.1038/ncomms9801
  24. Shaman A M, Ahmed S, Kamel L and Badr Y, 1987. Structural changes of ((NH4)1-xKx)2SO4 crystals. Phys. stat. sol. (a). 100: 115–119. doi:10.1002/pssa.2211000113
  25. Petrugevskii V M and Sherman W F, 1993. On the non-statistical substitution of potassium with ammonium in the K2SO4–(NH4)2SO4 system. J. Mol. Struct. 294: 171–174. doi:10.1016/0022-2860(93)80342-S
  26. González-Silgo C, Solans X, Ruiz-Pérez C, Martínez-Sarrión M L, Mestres L and Bocanegra E, 1997. Study on the mixed crystals [NH4]2–xKxSO4. J. Phys.: Condens. Matter. 9: 2657–2669. doi:10.1088/0953-8984/9/12/012
  27. STOE & Cie GmbH, WinXPOW 3.03. Powder diffraction software package. Darmstadt, Germany (2010).
  28. Kraus W and Nolze G, 1996. POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 29: 301–303. doi:10.1107/S0021889895014920
  29. Akselrud L and Grin Y J, 2014. WinCSD: software package for crystallographic calculations (Version 4). Appl. Cryst. 47: 803–805. doi:10.1107/S1600576714001058
  30. Fedorchuk A O, Parasyuk O V and Kityk I V, 2013. Second anion coordination for wurtzite and sphalerite chalcogenide derivatives as a tool for the description of anion sub-lattice. Mater. Chem. Phys. 139: 92–99. doi:10.1016/j.matchemphys.2012.12.058
  31. Shchepanskyi P A, Gaba V M, Stadnyk V Yo, Rudysh M Ya, Piasecki M and Brezvin R S, 2017. The influence of partial isomorphic substitution on electronic and optical parameters of ABSO4-group crystals. Acta Physica Polonica (at press). 
(c) Ukrainian Journal of Physical Optics