Home
page
Other articles
in this issue |
Structure and optical
anisotropy of K1.75(NH4)0.25SO4
solid solution
1,2Shchepanskyi P.A., 1Kushnir O.S., 1Stadnyk
V.Yo., 3Fedorchuk A.O., 1,2Rudysh M.Ya., 1Brezvin
R.S., 1Demchenko P.Yu. and 4Krymus A.S.
1Ivan Franko National University of Lviv, 8
Kyrylo and Mefodiy Street, 79005 Lviv, Ukraine
2J. Dlugosz Academy of Czestochowa, Armii
Krajowej 13/15, PL-42-201 Czestochowa, Poland
3Lviv National University of Veterinary Medicine
and Biotechnologies, 50 Pekarska Street, 79010 Lviv, Ukraine
4Eastern European National University, 13
Volya Avenue, 43025 Lutsk, Ukraine
Download this
article
Abstract. In this work we have grown single crystals Kx(NH4)2–xSO4
(x»1.75), which belong to a potassium–ammonium
sulfate family, and studied their room–temperature structure. Spectral
dependences of the principal refractive indices and principal optical birefringences
are measured in the visible region. Anomalous birefringence dispersion
is observed along the light propagation direction parallel to the principal
x axis. According to our birefringence extrapolation based on the Sellmeier
fit for the refractive indices, the symmetry of optical indicatrix at the
room temperature should increase at the light wavelength λIP»1350±60
nm. This corresponds to a specific ‘isotropic point’ defined by the
condition nx(λIP) = ny(λIP),
which has not been detected in either K2SO4 or (NH4)2SO4
crystals.
Keywords: potassium–ammonium sulfate, crystal
structure, refractive indices, optical anisotropy, birefringence, dispersion,
isotropic point
PACS: 78.20.Ci, 78.20.Hp, 81.40.Vw
UDC: 535.323, 535.5, 535.012, 548.0
Ukr. J. Phys. Opt.
18 187-196
doi: 10.3116/16091833/18/4/187/2017
Received: 20.07.2017
Анотація. У цій роботі вирощено
монокристали Kx(NH4)2–xSO4
(x»1.75), які належать до родини
сульфату калію–амонію, а також вивчено
їхню структуру за кімнатної температури.
Досліджено спектральні залежності головних
показників заломлення та головних оптичних
двопроменезаломлень у видимій області.
Вздовж напрямку розповсюдження світла
паралельно до головної осі х спостерігаємо
аномальну дисперсію подвійного променезаломлення.
Відповідно до екстраполяції подвійного
променезаломлення на основі апроксимації
Зельмеєра показників заломлення, симетрія
оптичної індикатриси за кімнатної температури
повинна підвищитися на довжині світлової
хвилі λIP»1350±60 нм. Це
відповідає специфічній «ізотропній точці»,
визначеній умовою nx(λIP) = ny(λIP).
Цю точку досі не було виявлено ні в кристалах
K2SO4 ні в (NH4)2SO4
K2SO4.
|
|
REFERENCES
-
Wardzynski W, 1961. Dichroism and birefringence of single crystals of cadmium
selenide. Proc. Roy. Soc. A. 260: 370–378. doi:10.1098/rspa.1961.0039
-
Bieniewski T M and Czyzak S J, 1963. Refractive indexes of single hexagonal
ZnS and CdS crystals. J. Opt. Soc. Amer. 53: 496–497. doi:10.1364/JOSA.53.000496
-
Hopfield J J and Thomas D G, 1965. Polariton absorption lines. Phys. Rev.
Lett. 15: 22–24. doi:10.1103/PhysRevLett.15.22
-
Henry C H, 1966. Coupling of electromagnetic waves in CdS. Phys. Rev. 143:
627–633. doi:10.1103/PhysRev.143.627
-
Hobden M V, 1967. Optical activity in a non-enantiomorphous crystal silver
gallium sulphide. Nature. 216: 678. doi:10.1038/216678a0
-
May M, Debrus S, Amzallag J and Hui X-M, 1992. Natural optical activity
and the anisotropic absorbing properties of CdGa2S4. J. Opt. Soc. Amer.
A. 9: 1412–1418. doi:10.1364/JOSAA.9.001412
-
Kushnir O and Vlokh O, 1995. Propagation of light in birefringent optically
active crystals possessing linear dichroism. Proc. SPIE. 2648: 585–595.
doi:10.1117/12.226230
-
Kushnir O S, Dzendzelyuk O S, Hrabovskyy V A and Vlokh O G, 2004. Optical
transmittance of dichroic crystals with “isotropic point”. Ukr. J.
Phys. Opt. 5: 1–5. doi: doi:10.3116/16091833/5/1/1/2004
-
Glazer A M, Zhang N, Bartasyte A, Keeble D S, Huband S and Thomas P A,
2010. Observation of unusual temperature-dependent stripes in LiTaO3
and LiTaxNb1–xO3 crystals with near-zero
birefringence. J. Appl. Cryst. 43: 1305–1313. doi:10.1107/S0021889810033868
-
Glazer A M, Zhang N, Bartasyte A, Keeble D S, Huband S, Thomas P A, Gregora
I, Borodavka F, Marguerone S and Hlinka J, 2012. LiTaO3 crystals with near-zero
birefringence. J. Appl. Cryst. 45: 1030–1037. doi:10.1107/S0021889812035121
-
Yariv A and Yeh P. Optical waves in crystals: propagation and control of
laser radiation. New York: Wiley (2003).
-
Laurenti J P, Rustagi K C and Rouzeyre M, 1976. Optical filters using coupled
light waves in mixed crystals. Appl. Phys. Lett. 28: 212–213. doi:10.1063/1.88700
-
Romanyuk M O, Andriyevsky B, Kostetsky O, Romanyuk M M and Stadnyk V, 2002.
Crystal optical method for temperature measuring. Condens. Matter Phys.
5: 579–586. doi:10.5488/CMP.5.3.579
-
Romanyuk M O and Romanyuk M M, 2005. Inversion of the sign of birefringence
and its application in thermometry. Ferroelectrics. 317: 57–61. doi:10.1080/00150190590963444
-
Bäumer Ch, Berben D, Buse K, Hesse H and Imbrock J, 2003. Determination
of the composition of lithium tantalate crystals by zero-birefringence
measurements. Appl. Phys. Lett. 82: 2248–2250. doi:10.1063/1.1566100
-
Kushnir O S, Grabovski V A, Dzendzelyuk O S and Lutsiv-Shumski L P, 2000.
Light propagation in wurtzite-type crystals with the Jones calculus. Proc.
SPIE. 4148: 123–128. doi:10.1117/12.388433
-
Wood I G, Daniels P, Brown R H and Glazer A M, 2008. Optical birefringence
study of the ferroelectric phase transition in lithium niobate tantalate
mixed crystals: LiNb1−xTaxO3. J. Phys.:
Condens. Matter. 20: 235237. doi:10.1088/0953-8984/20/23/235237
-
Stadnyk V Yo, Brezvin R S, Rudysh M Ya, Shchepanskyi P A, Gaba V M and
Kogut Z A, 2014. On isotropic states in α-LiNH4SO4 crystals. Opt. Spectrosc.
117: 756–758. doi:10.1134/S0030400X14110216
-
Rudysh M Ya, Brik M G, Khyzhun O Y, Fedorchuk A O, Kityk I V, Shchepanskyi
P A, Stadnyk V Yo, Lakshminarayana G, Brezvin R S, Bak Z and Piasecki M,
2017. Ionicity and birefringence of α-LiNH4SO4 crystals: ab initio DFT
study, X-ray spectroscopy measurements. RSC Adv. 7: 6889–6901. doi:10.1039/C6RA27386F
-
Huband S, Keeble D S, Zhang N, Glazer A M, Bartasytee A and Thomas P A,
2017. Crystallographic and optical study of LiNb1−xTaxO3.
Acta Cryst. B. 73: 498–506. doi:10.1107/S2052520617004711
-
Stadnyk V Yo, Romanyuk M O, Chyzh O Z and Vachulovych V F, 2007. The baric
changes of the refractive properties of K2SO4 crystals. Condens. Matter
Phys. 10: 45–50. doi:10.5488/CMP.10.1.45
-
El-Korashy A, El-Zahed H and Radwan M, 2003. Optical studies of (NH4)2SO4
single crystal in the paraelectric phase. J. Phys. Chem. Solids. 64: 2141–2146.
doi:10.1016/S0022-3697(03)00132-X
-
Lloveras P, Stern-Taulats E, Barrio M, Tamarit J-Ll, Crossley S, Li W,
Pomjakushin V, Planes A, Mañosa Ll, Mathur N D and Moya X, 2015. Giant
barocaloric effects at low pressure in ferrielectric ammonium sulphate.
Nature Commun. 6: 8801. doi:10.1038/ncomms9801
-
Shaman A M, Ahmed S, Kamel L and Badr Y, 1987. Structural changes of ((NH4)1-xKx)2SO4
crystals. Phys. stat. sol. (a). 100: 115–119. doi:10.1002/pssa.2211000113
-
Petrugevskii V M and Sherman W F, 1993. On the non-statistical substitution
of potassium with ammonium in the K2SO4–(NH4)2SO4 system. J. Mol. Struct.
294: 171–174. doi:10.1016/0022-2860(93)80342-S
-
González-Silgo C, Solans X, Ruiz-Pérez C, Martínez-Sarrión M L, Mestres
L and Bocanegra E, 1997. Study on the mixed crystals [NH4]2–xKxSO4.
J. Phys.: Condens. Matter. 9: 2657–2669. doi:10.1088/0953-8984/9/12/012
-
STOE & Cie GmbH, WinXPOW 3.03. Powder diffraction software package.
Darmstadt, Germany (2010).
-
Kraus W and Nolze G, 1996. POWDER CELL – a program for the representation
and manipulation of crystal structures and calculation of the resulting
X-ray powder patterns. J. Appl. Cryst. 29: 301–303. doi:10.1107/S0021889895014920
-
Akselrud L and Grin Y J, 2014. WinCSD: software package for crystallographic
calculations (Version 4). Appl. Cryst. 47: 803–805. doi:10.1107/S1600576714001058
-
Fedorchuk A O, Parasyuk O V and Kityk I V, 2013. Second anion coordination
for wurtzite and sphalerite chalcogenide derivatives as a tool for the
description of anion sub-lattice. Mater. Chem. Phys. 139: 92–99. doi:10.1016/j.matchemphys.2012.12.058
-
Shchepanskyi P A, Gaba V M, Stadnyk V Yo, Rudysh M Ya, Piasecki M and Brezvin
R S, 2017. The influence of partial isomorphic substitution on electronic
and optical parameters of ABSO4-group crystals. Acta Physica Polonica (at
press).
(c) Ukrainian Journal
of Physical Optics |