.

Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Topological defects caused by inhomogeneity of optical activity

Vasylkiv Yu., Skab I. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine

Download this article

Abstract. The present work is devoted to analysis of the effect of inhomogeneous axial fields (torsion and bending mechanical stresses, as well as conically shaped electric fields) on the optical activity in crystals belonging to different point symmetry groups. It is found that the topological defects of gyration surface orientation with half-integer strengths can appear under the action of these fields. We discuss potentials of spiral phase plates made of optically active materials for generating vortex vector beams.

Keywords: topological defects, optical activity, inhomogeneity, torsion, bending, electric field, spiral phase plates, vector beams, optical vortices 

PACS: 78.20.Ek, 42.50.Tx, 78.20.hb, 78.20.Jq
UDC: 535.56
Ukr. J. Phys. Opt. 18 95-101
doi: 10.3116/16091833/18/2/95/2017
Received: 12.04.2016

Анотація. У роботі аналізовано вплив неоднорідних аксіальних полів (крутильних і згинаючих механічних напружень, а також конічного електричного поля) на оптичну активність кристалів, що належать до різних точкових груп симетрії. Виявлено, що під дією цих полів виникатимуть топологічні дефекти орієнтації гіраційної поверхні з напівцілим зарядом. Обговорено можливість використання спіральних фазових пластинок, виготовлених з оптично активних матеріалів, для формування вихрових векторних пучків. 

REFERENCES
  1. Seidel J. Topological structures in ferroic materials. Domain walls, vortices and skyrmions. Springer International Publishing (2016). doi:10.1007/978-3-319-25301-5
  2. Zurek W H, 1985. Cosmological experiments in superfluid helium? Nature. 317: 505–508. doi:10.1038/317505a0
  3. Trebin H-R, 1998. Defects in liquid crystals and cosmology. Liquid Cryst. 24: 127–130. doi:10.1080/026782998207659
  4. Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E and Santamato E, 2009. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103: 013601. doi:10.1103/PhysRevLett.103.013601
  5. Kleman M and Lavrentovich O D, 2006. Topological point defects in nematic liquid crystals. Phil. Mag. 86: 4117–4137. doi:10.1080/14786430600593016
  6. Salomaa M M and Volovik G E, 1987. Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59: 533–613. doi:10.1103/RevModPhys.59.533
  7. Kurik M V and Lavrentovich O D, 1988. Defects in liquid crystals: homotopy theory and experimental studies. Sov. Phys.: Uspekhi. 31: 196–224. doi:10.1070/PU1988v031n03ABEH005710
  8. Onsager L, 1949. The two fluid model for helium II [remarks by L. Onsager on pp. 249–250]. Nuovo Cimento, Suppl. 6: 249–250.
  9. Feynman R. In: Progress in Low Temperature Physics, Vol. 1. Ed. by C Gorter. North-Holland (1955).
  10. Lin S-Z, Wang X, Kamiya Y, Chern G-W, Fan F, Fan D, Casas B, Liu Y, Kiryukhin V, Zurek W H., Batista C D and Cheong S-W, 2014. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nature Phys. 10: 970–977.
  11. Mermin N D, 1979. The topological theory of defects in ordered media. Rev. Mod. Phys. 51: 591–648. doi:10.1103/RevModPhys.51.591
  12. Skab I, Vasylkiv Yu, Savaryn V and Vlokh R, 2011. Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
  13. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
  14. Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
  15. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Phys. Rev. A. 84: 043815. doi:10.1103/PhysRevA.84.043815
  16. Vasylkiv Yu, Skab I and Vlokh R, 2014. Generation of double-charged optical vortices on the basis of electro-optic Kerr effect. Appl. Opt. 53: B60–B73. doi:10.1364/AO.53.000B60
  17. Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2013. Polarization singularities of optical fields caused by structural dislocations in crystals. J. Opt. 15: 044023. doi:10.1088/2040-8978/15/4/044023
  18. Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2011. On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals. Ukr. J. Phys. Opt. 12: 171–179 doi:10.3116/16091833/12/4/171/2011
  19. Vlokh O G, Spatial dispersion phenomena in parametrical crystal optics, Lviv: Vyshcha Shkola (1984).
  20. Sirotin Y and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Nauka (1975).
  21. Kranjcec M, Desnica D I, Celustka B, Borec A N, Kovacs G Sh, Hadmashy Z P, Suslikov L M and Studenyak I P, 1996. On some crystal-optic properties of γ-(GaxIn1–x)2Se3 single crystals. Phys. Stat. Solidi (a). 153: 539–546. doi:10.1002/pssa.2211530229
(c) Ukrainian Journal of Physical Optics