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Abstract. The present work is devoted to analysis of the effect of inhomogeneous 
axial fields (torsion and bending mechanical stresses, as well as conically shaped 
electric fields) on the optical activity in crystals belonging to different point 
symmetry groups. It is found that the topological defects of gyration surface 
orientation with half-integer strengths can appear under the action of these fields. 
We discuss potentials of spiral phase plates made of optically active materials for 
generating vortex vector beams. 
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1. Introduction 
Topological defects (TDs) play important role in a number of natural phenomena, e. g. in the case 
of structural phase transitions [1], in the development of the early Universe [2, 3] or in quantum 
communication systems [4]. The TDs arise in the material media of different types such as liquid 
crystals [5], quantum liquids (e.g., superfluid helium [6–9]), and ferroic materials [10]. For 
example, skyrmions and domain walls appearing in the course of phase transitions in ferroic 
materials play a role of TDs [1]. In liquid crystals and superfluid helium, TDs are also generated at 
a phase transition, since a modern theory of birth of the Universe involves this notion [2]. In other 
words, in all of the cases mentioned above the TDs result from some symmetry breaking that 
occurs under phase transitions.  

The TDs in liquid crystals represent a specific spatial order-parameter field for which the 
order parameter cannot shrink to a point [11]. Perhaps, it is only the TDs in liquid crystals that can 
be induced by special processing of liquid crystalline cells and not by phase transitions. Recently, 
we have also shown that the TDs associated with the orientation of optical indicatrix in solid-state 
material media can be induced by various external factors, such as mechanical torsion [12, 13] or 
bending [14]. Moreover, the TDs can be produced by conically distributed electric fields, due to 
electrooptic Pockels and Kerr effect [15, 16]. They can also arise due to piezooptic effect caused 
by the mechanical strains appearing around structural dislocations in solid crystals [17]. It would 
be natural to assume that the TDs of optical indicatrix orientation similar to those induced by the 
electrooptic Kerr effect can be generated using magnetic fields, due to a known Cotton-Mouton 
effect, since the structures of the relevant constitutive tensors are the same.  

In particular, the TDs mentioned above can give rise to specific defects of the phase front of 
optical radiation transmitting through a medium and, therefore, result in generating optical vortices 
that bear a nonzero orbital angular momentum. It is interesting that optical activity effect decreases 
the efficiency of spin-to-orbit angular moment conversion [18]. Probably, this fact can be thought 
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of as unique in the sense that here the optical activity plays an active part in producing the TDs and 
the corresponding optical vortices.  

On the other hand, the optical activity as a phenomenon of spatial dispersion can cause quite 
different implications in the processes of appearance of the TDs. Namely, an inhomogeneous 
spatial distribution of the gyration tensor that describes the optical activity effect can itself contain 
the TDs. In the present we analyze the TDs associated with the gyration tensor and the optical 
rotation caused by the gyration, whenever the latter are induced by the torsion and bending stresses 
or by the conically distributed electric fields.  

2. Results and discussion 
2.1. General remarks 
The optical activity is known to be associated with the spatial dispersion effect. It is described by a 
symmetric second-rank axial tensor klg  that arises as a result of accounting for dependence of the 

optical-frequency impermeability tensor ijB  on the wave vector lk  of optical wave: 

0
ij ij ijk kl lB B ie g k  .      (1) 

Here 0
ijB  denotes the optical-frequency impermeability with no spatial dispersion taken into 

account, while ijke  is the unitary, fully antisymmetric third-rank axial tensor termed as the Levi-

Civita tensor. Notice that the gyration tensor klg  is equal to zero in any centrosymmetric media.  

Below we will consider the optical activity effects induced by mechanical stresses (a 
piezogyration) or electrical fields (an electrogyration). Therefore we must recall general relations 
that quantize the said effects [19]. The piezogyration effect is described as a change klg  in the 

gyration tensor appearing under the action of the mechanical stress mnσ : 

kl klmn mng    ,     (2) 

where klmnβ  is the fourth-rank axial tensor with the internal symmetry 2 2[V ] . This symmetry 

implies that the piezogyration can exist only in non-centrosymmetric media. The linear 
electrogyration is described as 

kl klm mg E  ,      (3) 

where klm  is the third-rank axial tensor with the internal symmetry 2[V ]V  and mE  the strength 

of the electric field. The effect can exist in crystalline materials belonging to almost all the 
symmetry groups. 

2.2. Topological defects of gyration tensor orientation 
Since we consider the optical activity induced by the mechanical torsions, the bending stresses and 
the conically distributed electric fields, there is a need in clarifying analytical relations describing 
the spatial distributions of components of the mechanical stress tensor and the electric field vector. 
It is known [20] that, under torsion of a cylindrical crystalline sample around its geometrical axis, 
there appears a shear stress which may be presented as 

4 54

2
( )ZM X Y

R    


  .    (4) 

In Eq. (4), the axis Z coincides with the torsion axis, the axes X and Y are orthogonal to Z, 

( )Z
S

M r P dS   denotes the torsion torque,   the Kronecker delta, R the cylinder radius, S the 
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square of the cylinder basis, and P the mechanical load. As a result, we have two nonzero shear 
components of the stress tensor, σ4 and σ5. Let the torsion moment be applied around either an 
optic axis of uniaxial crystals or a three-fold symmetry axis of crystals that belong to the cubic 
system. As an example, the piezogyration tensor for the symmetry group 6m2  acquires the 
following form [19]: 
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.  (5) 

Note that the crystals belonging to this symmetry group manifest no natural optical activity. 
Thus, the gyration tensor components induced by the torsion stresses can be written as 

11 1131 31g   , 22 1131 31g     and 21 1131 32g    . As seen from Fig. 1a, the indicative 

surface of the gyration tensor (or simply a ‘gyration surface’) has an oval-like shape, with its petals 
revealing different signs of the effect. The angle Zζ  of rotation of the gyration surface around the 

Z axis (i.e., the optic axis) is given by 

3221

11 22 31
tan 2 Z

2gζ
g g




  


.    (6)  

Taking into account Eq. (4) and the evident relations cosX    and sinY    for the 

polar coordinate system (with the angle   being counted out anticlockwise, beginning from the 

positive X axis), one can rewrite Eq. (6) as 

tan 2 tan
2Z

Xζ
Y


    

 
,     

4 2Zζ  
  .  (7) 

 

     

2 4 6 8 10

2

4

6

8

10

X, mm

Y
, m

m

-135
-120
-105
-90
-75
-60
-45
-30
-15
0
15
30
45

, deg

  
(a)     (b) 

Fig. 1. The shape of gyration surface induced by the torsion stress (a), and (b) – XY distribution of rotation 
angle of the gyration eigenvectors around the Z axis. 
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Let us analyze the rotation of the gyration surface under the conditions when a wide parallel 
optical beam propagates through the sample along the Z axis. Then the dependence of the angle 

Zζ  upon the tracing angle   is linear and the eigenvectors of the gyration tensor rotate by 

180 deg around the Z axis whenever the tracing angle change amounts to 360 deg. Then the XY 
distribution of the gyration tensor arising under the torsion reveals a TD with the strength equal to 
½ (see Fig. 1b). Note that a similar TD of the gyration tensor, with the same half-integer strength, 
should be observed for the crystals that belong to the symmetry groups 43m , 3m, 3, 32 and 6 . 

Now we proceed to analyze the TDs of the gyration surface appearing when the bending 
stress is applied and the load 1P  is distributed over the upper surface of a crystal sample. When the 

sample is loaded along the X axis, the two stress tensor components come to play (see Ref. [14]): 

2
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.   (8) 

Here ZJ  is the area moment of inertia, M the bending moment, b, h and l imply respectively 

the width, the height and the length of the crystalline beam, and the q parameter is defined as 

1 /q P l . It is easy to prove that the TD of the gyration surface orientation can appear due to 

bending in all of the non-centrosymmetric symmetry groups that contain only rotation symmetry 
axes among their symmetry operations, as well as in the groups 6mm, 4mm and 3m. For example, 
the angle of rotation of the gyration surface around the Z axis for the group 6mm reads as 

21 22

11 22 21
tan 2 Z

2gζ
g g




 


.    (9) 

If we have , 0X Y   and certain conditions are satisfied for the size of the crystalline beam 

(see Ref. [14]), the relations tan 2 cotZζ   and 
4 2Zζ  

   hold true. Thus, in all of the cases 

mentioned above the TDs have half-integer strengths. 
As shown in the work [15], the conically shaped electric field results in the following 

coordinate dependences of the electric field components: 

1 2

tan cos
1 tan
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d





 

,  2 2

tan sin
1 tan

UE
d





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,  3 2(1 tan )
UE

d


 
,  (10) 

where U  is the electric voltage applied, d  the thickness of an electrooptic cell, and 
sin cosX    , sin sinY     and cosZ    correspond to the spherical coordinate 

system. Issuing from the structure of the electrogyration tensor for different symmetry groups, it 
follows that the TD of orientation of the gyration surface arising under the conical electric field 
can appear only in those crystals that belong to the trigonal system, i.e. to the symmetry groups 32, 
3, 3m, 3m  and 3 . As an example, the rotation angle of the gyration surface for the group 3m is 
given by 

21 2

11 22 1
tan 2 tan( )Z

2g Eζ
g g E

     


,    / 2 / 2Zζ    .   (11) 

As a consequence, the conically shaped electric field produces the TD of the gyration surface 
orientation with the half-integer strength. This remains true for all the symmetry groups mentioned 
above. 
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Hence, we have demonstrated that, under the action of inhomogeneous external fields, the XY 
distribution of the gyration tensor manifests singular points which give birth to the linear TDs of 
the gyration tensor orientation. However, contrary to the earlier known TDs associated with the 
orientation of optical indicatrix, the TDs of the gyration surface orientation do not affect the 
parameters of light propagating along the Z axis. In fact, the latter parameters are influenced only 
by the cross-section XY of the optical indicatrix. Strict consideration of the influence of optical 
activity on the parameters of light propagating along the Z axis testifies that the TDs are affected 
only by the gyration component 33g . 

Unfortunately, the heterogeneous external fields dealt with here either cannot change the 33g  

component for the crystals of middle and cubic systems or, alternatively, can change this 
component but with no appearance of the TDs. In such a case the following question arises: which 
kind of material inhomogeneity can lead to the appearance of TD of the gyration tensor, which 
generates defects in the phase front of the light emergent from crystal? At this point we remind 
that the optical gyration governs the phase difference   between the left- and right-handed 
circularly polarized waves: 

Z 33
Z

Z

2
2 2

d g
d

n


  


   ,  `   (12) 

where   is the angle of polarization plane rotation,   the specific rotation angle of the 

polarization plane, Zd  the sample thickness along the Z direction,   the light wavelength, and Zn  

the refractive index.  
The suggestion mentioned above implies that, in order to generate an optical vortex 

exclusively via the TD of optical activity, the phase profile caused by the gyration has to be 
helical. The easiest method for achieving such a helical phase front is to utilize a spiral phase plate 
prepared from optically active material and a circularly polarized incident light wave. However, 
simple estimations demonstrate that the phase difference 2  due to the optical activity needed for 
generating, e. g., at a helix pitch ~ 1 µm is equal to 33 1g   (with Zn  = 1.5 and   = 632.8 nm). It 

is too high optical activity, which is never observed in single crystals. As far as we know, the 
largest 33g  values occurring in the crystalline materials such as (Ga0.6In0.4)2Se3 and LiIO3 are of 

the order of 3~ 10  only [19, 21]. Moreover, the large enough optical activity in need cannot be 
induced by any known external field, e. g., due to 
electrogyration or piezogyration. Anyway, one can 
assume that it can be realized with some artificial 
materials. Then initially linearly polarized incident optical 
beam can acquire a vector-vortex beam, e.g., because of a 
helical shape of the outgoing face of optically active 
sample. Then the optical vortex is generated mainly due 
to the appearance of a ‘classical’ phase difference for the 
light passing through the spiral crystal plate, while the 
vector structure of this beam appears due to the presence 
of optical activity. In this case a doughnut mode-like 
spatial distribution of polarization states in the emergent 
vortex beam would be azimuthal, as shown in Fig. 2. This 
implies that, in principle, the optical gyration effect can 

 

Fig. 2. Schematic azimuthal distribution 
of polarization states in the emergent 
vortex beam bearing a doughnut mode. 
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be used for generating vector beams. However, the latter assertion needs a much more detailed 
analysis. In particular, it is not clear what would happen if, under the condition of full-circle 
angular tracing, the angle of polarization plane rotation is not a multiple of  . These problems 
will be a subject of our forthcoming studies. 

3. Conclusion 
In the present work we have analyzed the effect of inhomogeneous mechanical stresses and 
electric fields on the optical activity of crystals belonging to different point groups of symmetry. 
We have found that, like the application of mechanical torsion and bending or conically shaped 
electric fields to solid crystals can produce the TDs of gyration tensor orientation. In all of the 
cases under study, the strength of the TDs is half-integer. We have also shown that these 
topological defects do not affect the parameters of light that propagates along the dislocation line. 
Besides, the torsion and bending stresses with their moments parallel to the high-fold symmetry 
axis, as well as the conically shaped electric fields with the cone axes parallel to the said direction, 
cannot lead to appearance of singular spatial distributions of the gyration parameters, which are 
responsible for the light propagating along the dislocation line. At the same time, we have 
demonstrated that the spiral phase plate made of ‘artificial’ optically active materials, in principle, 
can be used for forming the vortex-vector optical beams. 
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Анотація. У роботі аналізовано вплив неоднорідних аксіальних полів (крутильних і 
згинаючих механічних напружень, а також конічного електричного поля) на оптичну 
активність кристалів, що належать до різних точкових груп симетрії. Виявлено, що під 
дією цих полів виникатимуть топологічні дефекти орієнтації гіраційної поверхні з 
напівцілим зарядом. Обговорено можливість використання спіральних фазових пластинок, 
виготовлених з оптично активних матеріалів, для формування вихрових векторних пучків.  


