Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Numerical studies of phase for the angular Talbot effect

Khebbache N., Djabi S. and Ferria K.

Download this article

Abstract. We provide a numerical study of phase observed at the angular Talbot effect for both one- and two-dimensional gratings. The effect allows for fractional self-imaging in the vicinity of the grating which is illuminated by the wave with a spherical front at different Talbot distances.

Keywords: Fraunhofer diffraction, Talbot effect, self-imaging

PACS: 42.25.Fx, 42.79.Dj
UDC: 535.42
Ukr. J. Phys. Opt. 16 165-170
doi: 10.3116/16091833/16/4/165/2015
Received: 24.04.2015

Анотація. У роботі представлено результати досліджень фази світлової хвилі на основі числового моделювання кутового ефекту Талбота для одно- і двовимірної ґраток. Ефект дає змогу спостерігати дробове самовідтворення зображення біля ґратки, опроміненої сферичними хвилями за умови різних відстаней Талбота. 

REFERENCES
  1. Talbot H F, 1836. Facts relating to optical science. Phil. Mag. 9: 401–407.
  2. Rayleigh L, 1881. On copying diffraction gratings, and some phenomena connected there-with. Phil. Mag. 11: 196–205. doi:10.1080/14786448108626995
  3. Guillet de Chatellus H, Lacot E, Glastre W, Jacquin O, Hugon O and Marklof J, 2013. Genera-tion of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feed-back lasers. Opt. Expr. 21: 15065–15074. doi:10.1364/OE.21.015065
  4. Jeremy A. Bolger, Peifang Hu, Joe T, Mok J L, Justin L. Blows and Benjamin Eggleton, 2005. Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains. Opt. Commun. 249: 431–439. doi:10.1016/j.optcom.2005.01.052
  5. Weiwei Z, Chenlong Z, Jiayuan W and Jiasen Z, 2009. An experimental study of the plas-monic Talbot effect. Opt. Expr. 17: 19757–19762. doi:10.1364/OE.17.019757
  6. Yiting Y, Delphine C, Torsten S, Benjamin L and Hans Z, 2013. The focusing and Talbot effect of periodic arrays of metallic nanoapertures in high-index medium. Plasmonics, 8: 723–732. doi:10.1007/s11468-012-9463-0
  7. Berry M, Marzoli I and Schleich W, 2001. Quantum carpets. Phys. World. 14: 1439–1444.
  8. Wang A, Gill P and Molnar A, 2009. Light field image sensors based on the Talbot effect. Appl. Opt. 48: 5897–5905. doi:10.1364/AO.48.005897
  9. Ryotaro S, Takashi S, Kazuhiko U, Shinichi K, Masayuki H, Toshifumi M, Naoki N and Yoko H, 2006. Measurement of wavefront aberration of human eye using Talbot image of two-dimensional grating. Opt. Rev. 13: 207–211. doi:10.1007/s10043-006-0207-2
  10. Berry M V and Klein S, 1996. Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43: 2139–2164. doi:10.1080/09500349608232876
  11. Shuyun T, Tongjun Z and Chuanfu C, 2008. Influence of the size of the grating on Talbot effect. Optik. 119: 695–699. doi:10.1016/j.ijleo.2007.04.011
  12. De Bougrenet J L, De La Tocnaye and Hamam H, 1995. The fractional Fresnel transform. J.Optics. 26: 49–56. doi:10.1088/0150-536X/26/2/001
  13. Aza-a J and Guillet de Chatellus H, 2014. Angular Talbot effect. Phys. Rev. Lett. 112: 213902. doi:PhysRevLett.112.213902
  14. Del Mar Sánchez-López M, Moreno I and Martínez-García A, 2009. Teaching diffraction gratings by means of a phasor analysis. Proc. of ETOP Conference, 1–12. doi:10.1364/etop.2009.ema1
  15. Goodman J E. Introduction to Fourier optics, 2nd Ed. (New York: McGraw-Hill, 1996).
(c) Ukrainian Journal of Physical Optics