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Abstract. We provide a numerical study of phase observed at the angular Talbot 
effect for both one- and two-dimensional gratings. The effect allows for fractional 
self-imaging in the vicinity of the grating which is illuminated by the wave with a 
spherical front at different Talbot distances. 
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1. Introduction 
The effect of self-imaging has been observed in 1836 by H. F. Talbot. Its explanation is based on 
the theory of scalar diffraction. The diffracted field is seen as superposition of replicas translated 
and weighted by the initial field; the number of the replicas is only linked to the fractional order (a 
so-called fractional Talbot effect). Rayleigh has successfully explained this phenomenon as 
interference of the diffracted beams in the paraxial approximation [1, 2]. 

The Talbot effect has opened the door for many applications such as laser sources [3], optical 
communications [4], plasmonics [5], matter–wave interactions [6], quantum mechanics [7], 
imagery [8], and medicine [9]. Many researchers have analyzed a self-imaging observed in the 
near field (i.e., in the Fresnel approximation), while the other have focused on the diffraction 
intensity distribution [10, 11] and how to simplify computation of the Fresnel transformation [12]. 

Notice that, in all of the studies mentioned above, the results for the Talbot effect have been 
examined for the case of the near field. Nonetheless, a recent work [13] has proved that the Talbot 
effect can also be generated in the far field, thus giving rise to a new phenomenon which has been 
termed as the ‘angular Talbot effect’.  

Following this approach, below we report on numerical studies of the angular Talbot effect 
observed under illumination of the grating with a parabolic wave front. Our analysis is associated 
with the phase observed at the angular Talbot effect, which is directly derived from the far-field 
approximation employed for the cases of one- and two-dimensional grating. As in Ref. [13], we 
study theoretically the angular Talbot effect for the case of 1D grating, and then extend the theory 
for describing 2D gratings. 

2. Theoretical aspects of the phase observed at the angular Talbot effect 
Assume that an amplitude diffraction grating (the aperture  ) is illuminated by a wave with 
spherical front and the wavelength λ (see Fig. 1). The grating is located at the distance /td pZ q  

from a source S1, where p and q are coprime integers and Zt denotes the distance at which the peri-
odic wave front is fully reproduced. It is called a Talbot distance and is expressed as 2 /tZ   . 
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Fig. 1. Illustration of phase observed at the angular Talbot effect using interference of two spherical waves. A 
grating is illuminated by a spherical wave generated by a source S1 located at a distance d. Green zone 
describes interference of the diffracted orders with the wave generated by another source S2.  

2.1. 1D grating 
The transmission function of a 1D grating is given by 
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where  g x  is the complex transmission function that varies over the elementary grating aperture 

and  envt x  the transmission function varying over the slits of the grating (their role being to 

collect all the diffraction orders – see Ref. [14]). The transmission function  can be convoluted by 
a train of Dirac deltas (comb functions)  x n    located at the positions n  and spaced by the 

intervals  : 
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Here   ( )xFT g x g k     is the Fourier transform and x the spatial coordinate. Then the spatial 

frequency kx becomes a transform variable. The electric field observed for the case of a parabolic 
wave can be written as  
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The exponential term involved in Eq. (3) indicates a quadratic phase curvature. The Fourier 
transform of the electric field at the location n  is given by 

     
2 2

( ) exp expx env x
n

nE x G k t n ink i
d










 
    

 
 .  (4) 

After substituting the term 2 /  Eq. (4) becomes as follows: 
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The second exponential term in Eq. (6) indicates that the quadratic phase depends on the coprime 
integers p and q. 
2.2. 2D grating 
To represent the field diffracted by a 2D grating in the far field, we follow the same steps as in the 
1D case. However, now we should add the spatial coordinate y and the spatial frequency ky. Then 
the transmission function of the 2D grating can be expressed in the form 

     ( , ) , , ,env
n m

t x y g x y t x y x n y m
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where   denotes the convolution operation,  ,g x y  the complex transmission function that 

varies over the elementary grating aperture,  ,envt x y  the transmission function varying over the 

slits of the 2D grating, and  ,x n y m      is again the train of the Dirac deltas spaced at the 

intervals   and located at the positions n  and m  respectively along the x and y directions. 
The Fourier transform of ( , )t x y  is as follows: 
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where ( , )x yg k k  implies the Fourier transform of  ,g x y . 

The electric field for the case of parabolic wave is given by 
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whereas its Fourier transforms can be written as  
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The second exponential term in Eq. (10) again indicates the quadratic phase (see Ref. [15]) that 
depends on the coprime integers p and q. 

3. Results and discussion  
As already mentioned, the Talbot effect appears when the diffracted orders interfere with each 
other and disappears when they get separated. More precisely, the effect depends on the phase of 
the diffracted orders. If the latter are in phase we observe the image of the grating, otherwise the 
angular Talbot effect pattern is generated (i.e., the diffracted orders have a quadratic phase). 

Assume that the 1D grating is made of N slits and the 2D grating of N*N slits. We have used 
numerical simulations with Matlab to derive the phase observed at the angular Talbot effect under 
the conditions of different Talbot distances. The main results are displayed in Fig. 2 and Fig. 3. 

The term exp(iπx2/λd) in Eq. (3) is responsible for the parabolic shape of the phase pattern 
displayed in Fig. 2a for the 1D gratings. Besides, for many p/q ratios one can see that the  
periodic patterns remain the same when we change the integer p and keep q constant. This is 
contrary to the case when p is kept constant and q changed, which leads to changing  
periodic patterns. In this relation we remind that the variation of the phase observed at the angular 
Talbot effect depends on q.  
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p/q = 4/3             p/q = 8/3 

   
p/q = 4/5             p/q = 6/5 

   
p/q = 1/6             p/q = 5/6 

(a) 

   
p/q = 4/3             p/q = 8/3 

   
p/q = 4/5             p/q = 6/5 

    
p/q = 1/6             p/q = 5/6 

(b) 
Fig. 2. Phase patterns simulated for 1D (a) and 2D (b) gratings at different p/q ratios. Right and upper images in 
panel (b) describe the phase patterns observed in the cases of constituent 1D gratings arranged along the y and 
x directions, respectively. 
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Fig. 3. 3D representations of the phase simulated at the Talbot effect for different p/q ratios. Copper and black 
colours correspond to the phase patterns observed for the constituent 1D gratings arranged respectively along 
the x and y directions, and mixed colour to the case when the two gratings are superimposed. 

The term exp[iπ(x2 + y2)/λd] present in Eq. (9) proves that the parabolic shape can also be 
observed in the case of 2D gratings. Our idea has been to consider the 2D grating as a 
superposition of two mutually perpendicular 1D gratings of the same size and the same slits 
number. However the patterns shown in Fig. 2b for the case when two 1D gratings are intersected 
reveal an unclear parabolic shape (cf. with Fig. 2a). A clearer manifestation of the parabolic shape 
for the 2D gratings comes from the simulations performed in 3D space (see Fig. 3). 

In addition to testifying a clear parabolic shape explained by the term exp[iπ(x2 + y2)/λd], 
Fig. 3 also demonstrates that the number of replicas and the distance d between the source and the 
grating are interconnected. The latter decreases with increasing number of replicas, according to 
the relationship d = p/qZt. Therefore the distance d is evidently proportional to the integer p. 
Eqs. (6) and (10) simply demonstrate that the quadratic terms exp(–iπn2q/p) and 
exp(iπ(n2 + m2)q/p) are proportional to q. Then the number of replicas depends directly on the 
increase in the q parameter. 
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4. Conclusion 
In this work we have suggested a new approach to analyzing the phase observed at the angular 
Talbot effect, which is based on the Fraunhofer diffraction. In fact this new class of the Talbot 
effects, the angular Talbot effect, can be considered as an extremely simplified version, for which 
the analytical analysis of the phase is less complicated when compared with the near–field case. 
Our simulation results for the both 1D and 2D gratings testify a parabolic-shaped phase depending 
on the exponential terms involved respectively in Eqs. (3) and (9). We have also demonstrated that 
the period of the phase depends on the integer q and the replicas number increases with its 
increasing. We believe that the effects for the phase observed at the angular Talbot effect can 
facilitate new applications in the time, spatial and spectral domains. 
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Анотація. У роботі представлено результати досліджень фази світлової хвилі на основі 
числового моделювання кутового ефекту Талбота для одно- і двовимірної ґраток. Ефект 
дає змогу спостерігати дробове самовідтворення зображення біля ґратки, опроміненої 
сферичними хвилями за умови різних відстаней Талбота.  


