Home
page
Other articles
in this issue |
High-power table-top
white-light few-cycle laser generator
Walid Tawfik
Download this
article
Abstract. We have achieved experimentally a generation of white-light
few-cycle femtosecond laser pulses, using a neon-filled hollow-core fibre.
The pulses observed by us are as short as 6.22 fs at the repetition rate
of 1 kHz, when the input is characterized by the parameters 2.5 mJ and
33 fs. Pulse compression has been achieved using a supercontinuum produced
in a static neon-filled hollow fibre, while a pair of chirped mirrors have
compensated the dispersion. Our technique allows for directly tuning the
pulse duration via changing the gas pressure, while maintaining near-transform-limited
pulses with constant output energies and thus reducing the complications
introduced by the chirped pulses. Using the measurements of the optical
transmission of the fibre as a function of the gas pressure, we have testified
a high enough throughput exceeding 60%. This demonstrates the successful
compression that yields few-cycle femtosecond-long pulses, with a wide
spectral bandwidth. The technique can be used when simultaneously exciting
different states in complex molecules.
Keywords: ultrafast lasers, hollow fibres,
femtosecond pulses, few-cycle light pulses
PACS: 78.47.jj
UDC: 535.37
Ukr. J. Phys. Opt.
16 111-119
doi: 10.3116/16091833/16/3/111/2015
Received: 26.05.2015
Анотація. У цій роботі експериментально
отримано генерацію “білих” фемтосекундних
лазерних імпульсів тривалістю в кількох
періодів, використовуючи пустотіле волокно,
наповнене неоном. Тривалість спостережуваних
імпульсів сягала 6.22 фм за частоти повторення
1 кГц, якщо використовувати вхідні імпульси
із 2.5 мДж і 33 фс. Стискання імпульсу суперконтинуумом
отримано в статичних, заповнених неоном
пустотілих волокнах, а пара дзеркал з лінійною
частотною модуляцією забезпечувала компенсацію
дисперсії. Запропонований метод дає змогу
безпосередньо змінювати тривалість імпульсу
тиском газу при збереженні параметрів
імпульсу, тим самим послаблюючи труднощі,
пов’язані з модульованими імпульсами.
Вимірюване пропускання волокна як функція
тиску газу перевищувало 60%. Спектральна
фаза суперконтинууму виявилась стабільною
впродовж кількох годин. Це дало змогу стиснути
імпульси аж до фемтосекунд, що складає
кілька періодів, із широкою спектральною
смугою. Метод можна використовувати для
одночасного збудження різних рівнів у
складних молекулах. |
|
REFERENCES
-
Rocca J J, Shlyaptsev V, Tomasel F G, Cortázar O D, Hartshorn D and Chilla
J L A, 1994. Demonstration of a discharge pumped table-top soft-X-ray laser.
Phys. Rev. Lett. 73: 2192. doi:10.1103/PhysRevLett.73.2192
-
Rocca J J, Shlyaptsev V N, Tomasel F G, Cortázar O D, Hartshorn H and
Chilla J L A, 1995. Demonstration of a Discharge Pumped Table-Top Soft-X-Ray
Laser. Phys. Rev. Lett. 75: 1236. doi:10.1103/PhysRevLett.75.1236
-
Walid Tawfik, Aslam Farooq W and Alahmed Z A, 2014. Damage profile of HDPE
polymer using laser-induced plasma. J. Opt. Soc. Korea. 18: 50–54. doi:10.3807/JOSK.2014.18.1.050
-
Agostini P and DiMauro L, 2004. The physics of attosecond light pulses.
Rep. Prog. Phys. 67: 813–855. doi:10.1088/0034-4885/67/6/R01
-
Krausz F and Ivanov M, 2009. Attosecond physics. Rev. Mod. Phys. 81: 163–234.
doi:10.1103/RevModPhys.81.163
-
Feng L Q and Chu T S, 2012. Nuclear signatures on the molecular harmonic
emission and the attosecond pulse generation. J. Chem. Phys. 136: 054102.
doi:10.1063/1.3681165
-
Cairns R A, Bingham R, Jaroszynski D A and Baron M. Laser-plasma interactions
(Taylor & Francis, 2009).
-
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec
T, Corkum P B. Heinzmann U, Drescher D, and Krausz F, 2001. Attosecond
metrology. Nature. 414: 509–513. doi:10.1038/35107000
-
Helml W, Maier A R, Schweinberger W, Grguraš I, Radcliffe P, Doumy G,
Roedig C, Gagnon J, Messerschmidt M, Schorb S, Bostedt C, Grüner F, DiMauro
L F, Cubaynes D, Bozek J D, Tschentscher Th, Costello J T, Meyer M, Coffee
R, Düsterer S, Cavalieri A L and Kienberger R, 2014. Measuring the temporal
structure of few-femtosecond free-electron laser x-ray pulses directly
in the time domain. Nature Photonics. 8: 950–957. doi:10.1038/nphoton.2014.278
-
Li H, Mignolet B, Wachter G, Skruszewicz S, Zherebtsov S, Süßmann F,
Kessel A, Trushin SA, Kling Nora G, Kübel M, Ahn B, Kim D, Ben-Itzhak
I, Cocke CL, Fennel T, Tiggesbäumker J, Meiwes-Broer K-H, Lemell C, Burgdörfer
J, Levine RD, Remacle F and Kling MF, 2015. Coherent electronic wave packet
motion in C60 controlled by the waveform and polarization of few-cycle
laser fields. Phys. Rev. Lett. 114: 123004. doi:10.1103/PhysRevLett.114.123004
-
Ishii N, Turi L, Yakovlev V S, Fuji T, Krausz F, Baltuska A, Butkus R,
Veitas G, Smilgevicius V, Danielius R and Piskarskas A, 2005. Multimillijoule
chirped parametric amplification of few-cycle pulses. Opt. Lett. 30: 567–569.
doi:10.1364/OL.30.000567
-
Shank C V, Fork R L, Yen R, Stolen R H and Tomlinson W J, 1982. Compression
of femtosecond optical pulses. Appl. Phys. Lett. 40: 761–762. doi:10.1063/1.93276
-
Martinez O E, Gordon J P and Fork R L, 1984. Negative group-velocity dispersion
using refraction. J. Opt. Soc. Amer. A. 1: 1003–1006. doi:10.1364/JOSAA.1.001003
-
Fork R L, Martinez O E and Gordon J P, 1984. Negative dispersion using
pairs of prisms. Opt. Lett. 9: 150–152. doi:10.1364/OL.9.000150
-
Tomlinson W J, Stolen R H and Shank C V, 1984. Compression of optical pulses
chirped by self-phase modulation in fibers. J. Opt. Soc. Amer. B. 1: 139–149.
doi:10.1364/JOSAB.1.000139
-
Alfano RR, Li Q, Jimbo T, Manassah J and Ho P, 1986. Induced spectral broadening
of a weak picosecond pulse in glass produced by an intense ps pulse. Opt.
Lett. 11: 626–628. doi:10.1364/OL.11.000626
-
Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira
S, De Silvestri S and Svelto O, 2003. Generation of 3.8-fs pulses from
adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett.
28: 1987–1989. doi:10.1364/OL.28.001987
-
Nisoli M, Sansone G, Stagira S, De Silvestri S, Svelto O and Vozzi C, 2002.
Ultra-broadband continuum generation by hollow-fiber cascading. Appl. Phys.
B. 75: 601–604. doi:10.1007/s00340-002-1042-1
-
Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K, 2003. Seven-terawatt
Ti:sapphire laser system operating at 50 Hz with high beam quality for
laser Compton femtosecond X-ray generation. Appl. Phys. B. 76: 497–503.
doi:10.1007/s00340-003-1144-4
-
Seres J, Muller A, Seres E, O'Keeffe K, Lenner M, Herzog R F, Kaplan D,
Spielmann Ch and Krausz F, 2003. Sub-10-fs terawatt-scale Ti:sapphire laser
system. Opt. Lett. 28: 1832–1834. doi:10.1364/OL.28.001832
-
Young-Shin Park and Hailin Wang, 2009. Resolved-sideband and cryogenic
cooling of an optomechanical resonator. Nature Physics. 5: 489–493. http://dx.doi.org/10.1038/nphys1303
-
Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J, 2007. Theory of ground
state cooling of a mechanical oscillator using dynamical back action. Phys.
Rev. Lett. 99: 093901. doi:10.1103/PhysRevLett.99.093901
-
Marquardt F, Chen JP, Clerk A A and Girvin S M, 2007. Quantum theory of
cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett.
99: 093902. doi:10.1103/PhysRevLett.99.093902
-
Schliesser A, Riviere R, Anetsberger G, Arcizet O and Kippenberg T J, 2008.
Resolved-sideband cooling of a micromechanical oscillator. Nature Phys.
4: 415–419 . doi:10.1038/nphys939
-
Pervak V, Ahmad I, Trushin S A, Major Z, Apolonski A, Karsch S and Krausz
F, 2009. Chirped-pulse amplification of laser pulses with dispersive mirrors.
Opt. Express. 17: 19204–19212. doi:10.1364/OE.17.019204
-
Mourou G A, Tajima T and Bulanov S V, 2006. Optics in the relativistic
regime. Rev. Mod. Phys. 78: 309– 371. doi:10.1103/RevModPhys.78.309
-
Perry M D and Mourou G, 1994. Terawatt to petawatt subpicosecond lasers.
Science. 264: 917–924. doi:10.1126/science.264.5161.917
-
Gerstner E, 2007. Laser physics: extreme light. Nature 446: 16–18. doi:10.1038/446016a
-
Krausz F and Ivanov M, 2009. Attosecond physics. Rev. Mod. Phys. 81: 163–234.
doi:10.1103/RevModPhys.81.163
-
Brabec T and Krausz F, 2000. Intense few-cycle laser fields: frontiers
of nonlinear optics. Rev. Mod. Phys. 72: 545–591.doi:10.1103/RevModPhys.72.545
-
Treacy E B, 1969. Optical pulse compression with diffraction gratings.
IEEE J. Quantum Electron. 5: 454–458. doi:10.1109/JQE.1969.1076303
-
Pessot M, Maine P and Mourou G, 1987. 1000 Times expansion compression
of optical pulses for chirped pulse amplification. Opt. Commun. 62: 419–421.
doi:10.1016/0030-4018(87)90011-3
-
Cheng Z, Krausz F and Spielmann C, 2002. Compression of 2 mJ kilohertz
laser pulses to 17.5 fs by pairing doubleprism compressor: analysis and
performance. Opt. Commun. 201: 145–155. doi:10.1016/S0030-4018(01)01675-3
-
Pretzler G, Kasper A and Witte K J, 2000. Angular chirp and tilted light
pulses in CPA lasers. Appl. Phys. B. 70: 1–9. doi:10.1007/s003400050001
-
Cavalieri A L, Goulielmakis E, Horvath B, Helml W, Schultze M, Fieß M,
Pervak V, Veisz L, Yakovlev V S, Uiberacker M, Apolonski A, Krausz F and
Kienberger R, 2007. Intense 1.5-cycle near infrared laser waveforms and
their use for the generation of ultra-broadband soft-x-ray harmonic continua.
New J. Phys. 9: 242. doi:10.1088/1367-2630/9/7/242
-
Tavella F, Nomura Y, Veisz L, Pervak V, Marcinkevičius A, and Krausz F,
2007. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse
amplifier. Opt. Lett. 32: 2227–2229. doi:10.1364/OL.32.002227
-
Chuzavkov Yu L, Orlov S N, Polivanov Yu N, Schelev Mikhail Y, Smirnov A
V, Smirnov V V, Vorobiev N S, 1999. Single-shot autocorrelator. Proc. SPIE.
3516: 743 (23rd International Congress on High-Speed Photography and Photonics).
doi:10.1117/12.350558
-
Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira
S, De Silvestri S and Svelto O, 2003. Generation of 3.8-fs pulses from
adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett.
28: 1987–1989. doi:10.1364/OL.28.001987
-
Gallmann L, Steinmeyer G, Sutter D H, Rupp T, Iaconis C, Walmsley I A and
Keller U, 2001. Spatially resolved amplitude and phase characterization
of femtosecond optical pulses. Opt. Lett. 26: 96–98. doi:10.1364/OL.26.000096
(c) Ukrainian Journal
of Physical Optics |