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Abstract. We have achieved experimentally a generation of white-light few-cycle 
femtosecond laser pulses, using a neon-filled hollow-core fibre. The pulses observed 
by us are as short as 6.22 fs at the repetition rate of 1 kHz, when the input is 
characterized by the parameters 2.5 mJ and 33 fs. Pulse compression has been 
achieved using a supercontinuum produced in a static neon-filled hollow fibre, while 
a pair of chirped mirrors have compensated the dispersion. Our technique allows for 
directly tuning the pulse duration via changing the gas pressure, while maintaining 
near-transform-limited pulses with constant output energies and thus reducing the 
complications introduced by the chirped pulses. Using the measurements of the 
optical transmission of the fibre as a function of the gas pressure, we have testified a 
high enough throughput exceeding 60%. This demonstrates the successful 
compression that yields few-cycle femtosecond-long pulses, with a wide spectral 
bandwidth. The technique can be used when simultaneously exciting different states 
in complex molecules. 
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1. Introduction 
Short laser pulses induced in plasma have been a precursor for many significant applications, 
including table-top soft X-ray lasers [1, 2], laser-induced plasma spectroscopy [3], and laser-
induced high-order harmonics generation. These have become an important tool in generating 
coherent attosecond laser pulses in the X–UV range [4–6]. In common, the strength of the laser–
plasma interactions relies on the intensity of driving radiation. Advanced power densities have 
recently been achieved, beginning a battle for ever shorter laser pulses as an exclusive means for 
time-resolved measurements of various ultrashort processes [7]. 

A decrease in the laser-pulse durations down to a few optical cycles, while maintaining high 
energies, is to provide very high electric fields and accelerate electrons up to keV-range energies, 
which is sufficient to quench the atomic Coulomb potential and yield ultrafast (attosecond-range 
duration) coherent pulses in the UV and even X-ray ranges  [8, 9]. These features allow generating 
ultrafast molecular reactions that comprise electronic excitation and ionization dynamics. 
Recently, a few-cycle (4 fs) pulse located at 720 nm has been used to control spatial localization of 
the excited electronic states in a C60 fullerene [10]. Although nowadays it is easy to generate and 
amplify the moderately ultrashort (~ 20 fs) pulses up to the Joule levels, the amplification of 
shorter pulses even to mJ level represents a challenging task [11]. In theory, this can be achieved 
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while starting with the picosecond or femtosecond regions to be compressed further down to a 
few-cycle regime. The latter can be maintained through the two types of pulse compression, a 
linear pulse and nonlinear pulse ones [12]. 

The  linear pulse compression works as follows: once the laser pulses are chirped, their 
period can be shrunk by eliminating this chirp, i.e. by broadening the spectral phase. The latter can 
be implemented using a chromatic dispersion that appears when the pulses pass through a 
dispersive optical element like an optical fibre, a pair of diffraction gratings or prisms, or chirped 
mirrors [13, 14]. Then the shortest feasible pulse duration is limited by the optical bandwidth of 
the pulses, which cannot be altered by a dispersive compression. In the case of the nonlinear pulse 
compression, the optical bandwidth is typically increased by a supercontinuum which can be 
generated using a self-phase modulation in some nonlinear medium [15]. Consequently, the 
durations of the resulting chirped pulses from the self-phase modulation can be strongly reduced 
by the linear compression [14].  

White-light generation via the self-phase modulation has been reported for the first time by 
Alfano et al. [16] who have obtained spectral broadening for the picosecond Nd:YAG laser pulses 
(532 nm and 5 mJ) passing through a borosilicate glass. Actually, it is a real challenge to employ 
the effective dispersion compensation and return an isolated ultrashort optical pulse using the 
supercontinuum generation [17]. In the recent years, significant progress has been made in the 
generation of supercontinuum in the VIS–NIR spectral ranges, using hollow microstructured fibres 
or two gas-filled hollow fibres in a cascading configuration [18].  

Recently, high-power laser schemes mostly employ Ti:sapphire amplifiers and many 
terawatt-class laser schemes have been developed [19, 20]. However, these very complex systems 
suffer from wavefront distortions and thermal lensing appearing due to thermal load imposed on 
the amplifiers by intense short pulses. Cryogenic cooling of Ti:sapphire crystals has been 
introduced to compensate these heat effects [21]. Similar to laser cooling of trapped ions, here the 
ground-state cooling of an optomechanical system represents in fact a radiation-pressure cooling in 
the resolved-sideband limit, where the cavity-photon lifetime surpasses the mechanical oscillation 
time [22–24]. 

2. High-energy chirped pulse amplification  
A chirped-pulse amplification (CPA) is an alternative to the complex Ti:sapphire amplification. It 
is very favourable for the generation of high-power few-cycle laser pulses [25]. For instance, the 
CPA of the ultrashort laser pulses produced by solid-state lasers has allowed creating optical 
pulses in the GW–TW range, with still brighter promises [26–28]. The CPA systems are now very 
common in the ultrafast spectroscopy, nonlinear optics, and the high-field laser science [29, 30]. 

To seed the CPA, low-energy ultrashort pulses are needed to be temporally broadened in a 
dispersive pulse stretcher in order to prevent damaging the gain medium during the amplification 
process. A group-delay dispersion of the opposite sign is introduced to remove the chirp of the 
amplified pulses and restore the pulse duration close to that of the input pulse. The conventional 
CPA systems rely on very complex and alignment-sensitive systems of prisms and gratings [31, 
32] for the pulse stretching and recompression. These in fact control a spatio-temporal quality and 
production efficiency for the pulses being amplified. When the prisms or diffraction gratings are 
used, their angular dispersion presents a favourite wavelength-dependent delay. On the other hand, 
the system is very sensitive to the alignment of its components, which can introduce severe 
difficulties in practical operation of the CPA systems. This is because any small thermal or 
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mechanical fluctuations cause tiny deviations from the optimal alignments of the grating or the 
prism, which induce an angular chirp and a pulse-front distortion. The result is decay of the pulse 
profile at the focus on both temporal and spatial scales [33]. Furthermore, a fairly large amount of 
unrecompensed higher-order dispersion needs an extra-dispersion control such as multilayer 
dispersive mirrors [34, 35] or hybrid (grating–prism–material) stretcher-compressor systems [36], 
whenever one deals with bandwidth-limited pulses in the broadband amplifiers working in the10 fs 
regime [37]. 

Here we report a novel technique for generating few-cycle femtosecond light pulses, using a 
gas-filled hollow-core fibre. Using the experimental configuration suggested in this work, 6.22 fs 
output light pulses have been obtained with the energies of up to 0.6 mJ, using a 32 fs laser with 
the 2.5 mJ energy and the 1 kHz repetition rate. The pulse compression is attained by the 
supercontinuum created in the gas-filled hollow fibre, whereas the dispersion is compensated via 
the chirped mirrors. This technique allows for preserving near-transform-limited pulses with fixed 
output energies, thus reducing some problems imposed by the chirped pulses.  

3. A few-cycle white-light laser generator setup 
A scheme of our laser system with a detailed optical layout is shown in Fig. 1. In this system, the 
amplification is made by a 1 kHz regenerative CPA amplifier that produces 32 fs, 2.5 mJ pulses at 
800 nm. A 15 fs mode-locked Ti:sapphire seed oscillator (400 mW, 75 MHz, and 800 nm) 
generates femtosecond laser pulses in the TEM00 mode. The basic oscillator setup consists of 
pump beam mirrors PM1 and PM2, folded cavity mirrors, a pump beam focusing lens, a pair of 
concave spherical mirrors aligned with the Ti:sapphire laser rod, an output coupler, coated metal 
mirrors Rm1 and Rm2, a set of prisms used for dispersion compensation, and a slit that serves as a 
spectral tuning element. The oscillator can be tuned from 780 nm to 820 nm. The seed oscillator is 
pumped by a 4 W, 532 nm green diode-pumped CW solid-state DPSS laser Opus (Laser 
Quantum).  

The seed pulses are stretched in the temporal domain by means of a stretcher. The stretcher is 
employed according to a standard double-path scheme, with a single diffraction grating SG and a 
telescope formed by a flat mirror SM4 and a spherical mirror SS with broadband dielectric 
coatings. After passing through a Faraday isolator (FI) that changes the polarization from 
horizontal to vertical, the stretched pulses are injected into a regenerative amplifier RA with the 
aid of a first Pockels cell RPC1. After a necessary number of resonator round trips, the energy of 
the laser pulse reaches its maximum value higher than 3 mJ. The amplified laser pulses are 
released from the RA resonator by a second Pockels cell RPC2. This is done by applying short, 
bell-shaped high-voltage pulses to the cell RPC2, which acts as a quarter-wave plate. The 
amplifier RA is pumped with a pulsed green laser (a diode-pumped Nd:YLF Q-switched laser with 
the wavelength of 527 nm, the energy of 20 mJ, the duration of 170 ns and the repetition rate of 
1 KHz), using a vertically polarized laser model DM20–527 (Photonics Industries). 

After passing the amplifier RA, the laser pulse is sent to a gate subsystem (a further pulse 
picker) that consists of two crossed polarizers and a third Pockels cell placed in between. The 
pulse picker is used to control the laser output with an external gate signal and to enhance the 
contrast. Finally, the pulse is compressed back to the femtosecond regime via a compressor. To 
prevent any possible damage of the optical elements of the compressor, we expand the beam using 
a telescope composed of the mirrors TT1 and TT2. The compressor includes an input mirror CM1, 
a diffraction grating CG, a mirror assembly CM2 and CM3, a ‘roof’ mirror assembly CR, and an 
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output mirror CM4. The laser beam strikes the grating four times inside the compressor. Behind 
the compressor, the laser pulses acquire the duration 32 fs at the 2.5 mJ energy and the 1 kHz 
repetition. 

 

Fig. 1. Optical layout of our few-cycle white-light generator. 
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The resulting amplified pulse is directed towards a final stage which produces the few-cycle 
pulse regime. We conventionally call this stage as a Compulse compressor. The Compulse is 
composed of a one-metre hollow fibre filled with a neon gas, which is followed by a multilayered 
chirped-mirror compressor. Using a concave mirror M1 with f = 1.2 m, the laser radiation is 
focused onto the fused silica fibre with the inner diameter of 250 m. The spectrum of the pulse is 
broadened via the self-phase modulation in the neon gas under the controlled pressure up to 
2.5 atm. Finally, the output beam is collimated by a mirror M6 and then compressed between two 
chirped mirrors M7 and M8, thus reaching the few-cycle regime. 

4. Results and discussion 
The output beam characteristics depend on many parameters, including the nonlinear phase shift 
due to the supercontinuum occurring in the neon gas, the chirped-mirror compressor and the beam 
properties of both the seed and CPA amplifiers. The throughput efficiency of the optical fibre and 
the beam bandwidth affect the output properties, too. 

The autocorrelation measured for the case of optimized seed-beam oscillator is shown in 
Fig. 2. These measurements have been taken using a single-shot autocorrelator, as shown in Fig. 1 
[38]. The mode-locked pulse duration is optimized at 18 fs for the central wavelength of 795 nm 
and the bandwidth of 52 nm. The oscillator wavelength can be tuned in the region 750–850 nm 
with the help of a couple of prisms combined with a variable optical slit. These elements provide a 
region in the cavity where all the spectral components of the Ti:sapphire emission are spatially 
spread. While the oscillator wavelength can be tuned by changing the position of the slit in the 
horizontal plane, the bandwidth of the output can be changed by varying the width of that slit.  

 

 

 

 

Fig. 2. Autocorrelation function for 
the Ti:sapphire oscillator, as 
measured at 795 nm and the 
bandwidth 52 nm. 

 

 

 

 

 

Fig. 3. Illustration of estimations 
of the pulse width (in sech2) 
following from the FWHM of the 
autocorrelation signal. The result 
is equal to 33.4 fs. 

 



W. Tawfik 

Ukr. J. Phys. Opt. 2015, Volume 16, Issue 3 116 

The amplified femtosecond pulse observed after the CPA is illustrated in Fig. 3. Given the 
estimation for the pulse width (in sech2), the pulse duration is approximately 0.65 from the width 
of the autocorrelation signal (the FWHM). Since the Gaussian curve fitting of the experimental 
autocorrelation has resulted in the FWHM equal to 51.5 fs, the pulse width is estimated as 33.4 fs. 

The bandwidth of the amplified pulses has been measured with a spectrometer (see Fig. 4). 
The bandwidth of the amplified signal is found to be 25.8 nm at the central wavelength (0 = 
797.28 nm) and for the pulse duration of 33.4 fs. After the CPA, the transverse beam profile 
resembles a standard Gaussian TEM00 distribution. The image of the amplified signal-beam profile 
taken using a CCD camera is shown in Fig. 5. At this stage, the output pulse energy reaches the 
value 2.5 mJ/pulse for both the single pulse and the 1 KHz modes. 

 
Fig. 4. Illustration of estimations of the bandwidth of the amplified signal (0 = 797.28 nm and the pulse duration 
33.4 fs). The result is equal to 25.8 nm. 

 

  

Fig. 5. Beam profile images recorded for the 
2.5 mJ output beam emergent from the CPA 
power amplifier, which show the Gaussian 
transverse distribution TEM00.  

Fig. 6. Illustration of spectral broadening of the 
output beam (~ 350 nm). 

 

In fact, the very narrow bandwidth typical for the laser gain media forbids creating the few-
cycle pulses directly from the CPA system. To overcome this fundamental restriction, the external 
spectral broadening based on the hollow fibre and the subsequent pulse compression are utilized, 
using the Compulse stage (see Fig. 6). By optimizing a metre-long hollow fibre at the pressure 
2.5 atm, we have reduced the input 2.5 mJ pulses to 1.5 mJ behind the fibre, which indicates a high 
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efficiency (~ 60%) for our system. To characterize 
the compressed output pulse, we have used a spectral 
phase interferometry for directly reconstructing the 
electric field [39] (see Fig. 1). The spectral phase 
measured for the pulses with the FWHM duration 
8.9 fs is within 6% of the Fourier limit (6.22 fs). The 
peak power of the pulses is then ~ 0.1 TW. The 
temporal pulse structure and its phase are displayed in 
Fig. 7. The pulse-to-pulse output power fluctuations 
measured by us are about 2.5% for the final output 
(i.e., after passing the Compulse stage), and 1% after 
the CPA.  

5. Conclusion 
Summing up, we have demonstrated a production of 
6.22 fs pulses having ultrawide spectral bandwidths 
(600–950 nm), with the corresponding peak powers 
ranging towards the TW frontiers. Our system is com-
pact, table-top and robust, with the power fluctuations 
not exceeding 3%. The wide spectral-band pulses 
observed by us can be used to study transient 
absorption in the complex molecules for different 
simultaneous transitions. Using the supercontinuum 
with spectrally wider pulses, the compression down to 
one femtosecond and, probably, even into the 
attosecond regime can become possible in the near 
future, using the ultraviolet and X-ray pulses. 
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Анотація. У цій роботі експериментально отримано генерацію “білих” фемтосекундних 
лазерних імпульсів тривалістю в кількох періодів, використовуючи пустотіле волокно, 
наповнене неоном. Тривалість спостережуваних імпульсів сягала 6.22 фм за частоти 
повторення 1 кГц, якщо використовувати вхідні імпульси із 2.5 мДж і 33 фс. Стискання 
імпульсу суперконтинуума отримано в статичних, заповнених неоном пустотілих 
волокнах, а пара дзеркал з лінійною частотною модуляцією забезпечувала компенсацію 
дисперсії. Запропонований метод дає змогу безпосередньо змінювати тривалість імпульсу 
тиском газу при збереженні параметрів імпульсу, тим самим послаблюючи труднощі, 
пов’язані з модульованими імпульсами. Вимірюване пропускання волокна як функція тиску 
газу перевищувало 60%. Спектральна фаза суперконтинууму виявилась стабільною 
впродовж кількох годин. Це дало змогу стиснути імпульси аж до фемтосекунд, що складає 
кілька періодів, із широкою спектральною смугою. Метод можна використовувати для 
одночасного збудження різних рівнів у складних молекулах.  


