Home
page
Other articles
in this issue |
Optical vortex generation
by volume holographic elements with embedded phase singularity: Effects
of misalignments
Bekshaev A., Sviridova S., Popov A., Rimashevsky
A. and Tyurin A.
Download this
article
Abstract. Based on the linear theory for optical vortex (OV)
formation in volume holographic elements (HE) with embedded phase singularity
(A. Bekshaev et al., Opt. Commun. 285 (2012) 4005), we analyze theoretically
the OV-beams obtained when the incident Gaussian beam axis deviates from
the optical axis of the HE. For different displacements of the incident
beam with respect to the HE centre, the spatial characteristics of the
diffracted beams and their evolution during the post-HE propagation are
investigated numerically with allowance for the radiation extinction in
the HE depth. A special attention is paid to behaviour of the beam centroid
(centre of gravity) trajectory. The sensitivity of the generated OV-beam
profile to the incident beam misalignments can be used for the output beam
shaping and control, in particular, for compensation of the OV-beam distortions
associated with the light extinction
Keywords: optical vortex, volume hologram,
misalignment, transformation, spatial structure, beam propagation
PACS: 42.25.Bs, 42.25.Fx, 42.40.Pa, 42.40.Eq,
42.50.Tx, 42.60.Jf, 42.90.+m
UDC: 535.41+535.42/.44
Ukr. J. Phys. Opt.
14 171-186
doi: 10.3116/16091833/14/4/171/2013
Received: 28.06.2013
Анотація. На основі лінійної теорії
формування оптичних вихорів (ОВ) в об’ємних
голографічних елементах (ГЕ) із вбудованою
фазовою сингулярністю (A. Bekshaev et al., Opt. Commun.
285 (2012) 4005) теоретично аналізуються ОВ-пучки,
одержані за умов, коли падаючий гаусів
пучок відхиляється від оптичної осі ГЕ.
Засобами чисельного аналізу розглянуто
просторові характеристики та еволюцію
дифрагованих пучків з урахуванням екстинкції
падаючого випромінювання в товщі ГЕ. Особливу
увагу надано поведінці центра тяжіння
дифрагованого пучка. Показано, що завдяки
зсувам падаючого пучка відносно осі ГЕ
з’являється можливість цілеспрямовано
керувати формою одержаного вихрового пучка,
зокрема, для компенсації спотворень його
профілю, обумовлених поглинанням та екстинкцією
в ГЕ. |
|
REFERENCES
-
Soskin M S and Vasnetsov M V, 2001. Singular optics. Progr. Opt. 42: 219–276.
http://dx.doi.org/10.1016/S0079-6638(01)80018-4
-
Bekshaev A Ya, Soskin M S and Vasnetsov M V. Paraxial light beams with
angular momentum. New York: Nova Science Publishers (2008). PMid:18669354
-
Nieminen T A, Higuet J, Knoner G, Loke V L Y, Parkin S, Singer W, Heckenberg
N R and Rubinsztein-Dunlop H, 2006. Optically driven micromachines: progress
and prospects. Proc. SPIE. 6038: 237–245.
-
He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H, 1995. Direct
observation of transfer of angular momentum to absorptive particles from
a laser beam with a phase singularity. Phys. Rev. Lett. 75: 826–829.
http://dx.doi.org/10.1103/PhysRevLett.75.826PMid:10060128
-
Simpson N B, Dholakia K, Allen L and Padgett M J, 1997. Mechanical equivalence
of spin and orbital angular momentum of light: an optical spanner. Opt.
Lett. 22: 52–54. http://dx.doi.org/10.1364/OL.22.000052
PMid:18183100
-
Masajada J, Leniec M, Drobczyński S, Thienpont H and Kress B, 2009. Micro-step
localization using double charge optical vortex interferometer. Opt. Express.
17: 16144–16159. http://dx.doi.org/10.1364/OE.17.016144
PMid:19724614
-
Masajada J, Leniec M, Jankowska E, Thienpont H, Ottevaere H and Gomez V,
2008. Deep microstructure topography characterization with optical vortex
interferometer. Opt. Express. 16: 19179–19191.http://dx.doi.org/10.1364/OE.16.019179
PMid:19582010
-
Wang W, Yokozeki T, Ishijima R, Takeda M and Hanson S G, 2006. Optical
vortex metrology based on the core structures of phase singularities in
Laguerre-Gauss transform of a speckle pattern. Opt. Express. 14: 10195–10206.
http://dx.doi.org/10.1364/OE.14.010195
PMid:19529415
-
Anzolin G, Tamburini F, Bianchini A and Barbieri C, 2009. Method to measure
off-axis displacements based on the analysis of the intensity distribution
of a vortex beam. Phys. Rev. A. 79: 033845.http://dx.doi.org/10.1103/PhysRevA.79.033845
-
Mawet D, Riaud P, Absil O and Surdej J, 2005. Annular groove phase mask
coronagraph. Astrophys. J. 633: 1191–1200. http://dx.doi.org/10.1086/462409
-
Swartzlander G A, Jr, 2009. The optical vortex coronagraph. J. Opt. A.
11: 094022. http://dx.doi.org/10.1088/1464-4258/11/9/094022
-
Tamburini F, Umbriaco G, Anzolin G, Barbieri C, Bianchini A, 2006. FrogEye,
the quantum coronagraphic mask. The photon orbital angular momentum and
its applications to astronomy. Mem. Soc. Astron. Ital. Suppl. 9: 484–485.
-
Anzolin G, Tamburini F, Bianchini A, Umbriaco G and Barbieri C, 2008. Optical
vortices with starlight. Astron. Astrophys. 488: 1159–1165. http://dx.doi.org/10.1051/0004-6361:200810469
-
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S and Franke-Arnold
S, 2004. Free-space information transfer using light beams carrying orbital
angular momentum. Opt. Express. 12: 5448–5456. http://dx.doi.org/10.1364/OPEX.12.005448
PMid:19484105
-
Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient
generation and sorting of orbital angular momentum eigenmodes of light
by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124. http://dx.doi.org/10.1063/1.3154549
-
Slussarenko S, Karimi E, Piccirillo B, Marrucci L and Santamato E, 2009.
Universal unitary gate for single-photon spin-orbit four-dimensional states.
Phys. Rev. A. 80: 022326. http://dx.doi.org/10.1103/PhysRevA.80.022326
-
Fadeyeva T, Rubass A, Volyar A and Swatzlander G, 2008. Qudrefringence
of optical vor-tices in uniaxial crystal. J. Opt. Soc. Amer. A. 25: 1643–1641.
http://dx.doi.org/10.1364/JOSAA.25.001634
-
Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali
E and Sciarrino F, 2012. Spin-to-orbital optical angular momentum conversion
in liquid crystal q-plates: classi-cal and quantum applications. Mol. Cryst.
Liq. Cryst. 561: 48–56. http://dx.doi.org/10.1080/15421406.2012.686710
-
Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance
of singularities of optical fields under torsion of crystals containing
threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340.http://dx.doi.org/10.1364/JOSAA.28.001331
PMid:21734730
-
Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum
conversion via electrooptic Pockels effect in crystals. Phys. Rev. A. 84:
043815. http://dx.doi.org/10.1103/PhysRevA.84.043815
-
Soroko L M. Holography and coherent optics. New York: Plenum Press, London
(1980). http://dx.doi.org/10.1007/978-1-4684-3420-0 PMid:7401912
-
Goodman J W. Introduction to Fourier optics. New York: McGrow–Hill (1996).
-
Solimar L and Cook D J. Volume holography and volume gratings. New York:
Academic Press (1981).
-
Basistiy I V, Soskin M S and Vasnetsov M V, 1995. Optical wavefront dislocations
and their properties. Opt. Commun. 119: 604–612. http://dx.doi.org/10.1016/0030-4018(95)00267-C
-
Heckenberg N R, McDuff R, Smith C P, Rubinstein-Dunlop H and Wegener M
J, 1992. Laser beams with phase singularities. Opt. Quant. Electron. 24:
S951–S962. http://dx.doi.org/10.1007/BF01588597
-
Bazhenov V Yu, Vasnetsov M V and Soskin M S, 1990. Laser beams with screw
dislocations in their wavefronts. JETP Lett. 52: 429–431.
-
Rozas D, Law C T and Swartzlander G A, Jr, 1997. Propagation dynamics of
optical vortices. J. Opt. Soc. Amer. B. 14: 3054–3065. http://dx.doi.org/10.1364/JOSAB.14.003054
-
Sacks Z S, Rozas D and Swartzlander G A, Jr, 1998. Holographic formation
of optical-vortex filaments. J. Opt. Soc. Amer. B. 15: 2226–2234. http://dx.doi.org/10.1364/JOSAB.15.002226
-
Swartzlander G A, Jr, Optical vortex filaments. In: Optical vortices. Ed.
by Vasnetsov M and Staliunas K. New York: Horizons in World Physics 228,
Nova Science Publishers (1999).
-
Pas'ko V A, Basistiy I V, Vasnetsov M V and Soskin M S, 2004. Analysis
of optical vortex beams with integer and fractional topological charge.
Proc. SPIE. 5477: 83–88. http://dx.doi.org/10.1117/12.558807
-
Basistiy I V, Pas'ko V A, Slyusar V V, Soskin M S and Vasnetsov M V, 2004.
Synthesis and analysis of optical vortices with fractional topological
charges. J. Opt. A: Pure Appl. Opt. 6: S166–S169.http://dx.doi.org/10.1088/1464-4258/6/5/003
-
Bekshaev A Ya and Karamoch A I, 2008. Spatial characteristics of vortex
light beams produced by diffraction gratings with embedded phase singularity.
Opt. Commun. 281: 1366–1374. http://dx.doi.org/10.1016/j.optcom.2007.11.032
-
Bekshaev A Ya and Karamoch A I, 2008. Displacements and deformations of
a vortex light beam produced by the diffraction grating with embedded phase
singularity. Opt. Commun. 281: 3597–3610.http://dx.doi.org/10.1016/j.optcom.2008.03.070
-
Karimi E, Zito G, Piccirillo B, Marrucci L and Santamato E, 2007. Hypergeometric-Gaussian
modes. Opt. Lett. 32: 3053–3055. http://dx.doi.org/10.1364/OL.32.003053
PMid:17975594
-
Liu Yi-Dong, Gao Chun-Qing and Gao Ming-Wei, 2008. Study on holographic
grating dif-fraction for Laguerre-Gaussian beam generation, Chinese Phys.
B. 17: 1769–1776. http://dx.doi.org/10.1088/1674-1056/17/5/037
-
Bekshaev A, Orlinska O and Vasnetsov M, 2010. Optical vortex generation
with a "fork" hologram under conditions of high-angle diffraction. Opt.
Commun. 283: 2006–2016. http://dx.doi.org/10.1016/j.optcom.2010.01.012
-
Bekshaev A Ya, Sviridova S V, Popov A Yu and Tyurin A V, 2012. Generation
of optical vortex light beams by volume holograms with embedded phase singularity.
Opt. Commun. 285: 4005–4014. http://dx.doi.org/10.1016/j.optcom.2012.06.010
-
Mair A, Vaziri A, Weihs G and Zeilinger A, 2001. Entanglement of the orbital
angular momentum states of photons. Nature (London). 412: 313–316. http://dx.doi.org/10.1038/35085529
PMid:11460157
-
Leach J, Jack B, Romero J, Ritsch-Marte M, Boyd R W, Jha A K, Barnett S
M, Franke-Arnold S and Padgett M J, 2009. Violation of a Bell inequality
in two-dimensional orbital angular momentum state-spaces. Opt. Express.
17: 8287–8293. http://dx.doi.org/10.1364/OE.17.008287
PMid:19434161
(c) Ukrainian Journal
of Physical Optics |