Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Optical vortex generation by volume holographic elements with embedded phase singularity: Effects of misalignments

Bekshaev A., Sviridova S., Popov A., Rimashevsky A. and Tyurin A.

Download this article

Abstract. Based on the linear theory for optical vortex (OV) formation in volume holographic elements (HE) with embedded phase singularity (A. Bekshaev et al., Opt. Commun. 285 (2012) 4005), we analyze theoretically the OV-beams obtained when the incident Gaussian beam axis deviates from the optical axis of the HE. For different displacements of the incident beam with respect to the HE centre, the spatial characteristics of the diffracted beams and their evolution during the post-HE propagation are investigated numerically with allowance for the radiation extinction in the HE depth. A special attention is paid to behaviour of the beam centroid (centre of gravity) trajectory. The sensitivity of the generated OV-beam profile to the incident beam misalignments can be used for the output beam shaping and control, in particular, for compensation of the OV-beam distortions associated with the light extinction

Keywords: optical vortex, volume hologram, misalignment, transformation, spatial structure, beam propagation

PACS: 42.25.Bs, 42.25.Fx, 42.40.Pa, 42.40.Eq, 42.50.Tx, 42.60.Jf, 42.90.+m
UDC: 535.41+535.42/.44
Ukr. J. Phys. Opt. 14 171-186
doi: 10.3116/16091833/14/4/171/2013
Received: 28.06.2013

Анотація. На основі лінійної теорії формування оптичних вихорів (ОВ) в об’ємних голографічних елементах (ГЕ) із вбудованою фазовою сингулярністю (A. Bekshaev et al., Opt. Commun. 285 (2012) 4005) теоретично аналізуються ОВ-пучки, одержані за умов, коли падаючий гаусів пучок відхиляється від оптичної осі ГЕ. Засобами чисельного аналізу розглянуто просторові характеристики та еволюцію дифрагованих пучків з урахуванням екстинкції падаючого випромінювання в товщі ГЕ. Особливу увагу надано поведінці центра тяжіння дифрагованого пучка. Показано, що завдяки зсувам падаючого пучка відносно осі ГЕ з’являється можливість цілеспрямовано керувати формою одержаного вихрового пучка, зокрема, для компенсації спотворень його профілю, обумовлених поглинанням та екстинкцією в ГЕ.

  1. Soskin M S and Vasnetsov M V, 2001. Singular optics. Progr. Opt. 42: 219–276.
  2. Bekshaev A Ya, Soskin M S and Vasnetsov M V. Paraxial light beams with angular momentum. New York: Nova Science Publishers (2008). PMid:18669354 
  3. Nieminen T A, Higuet J, Knoner G, Loke V L Y, Parkin S, Singer W, Heckenberg N R and Rubinsztein-Dunlop H, 2006. Optically driven micromachines: progress and prospects. Proc. SPIE. 6038: 237–245.
  4. He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H, 1995. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75: 826–829. 
  5. Simpson N B, Dholakia K, Allen L and Padgett M J, 1997. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22: 52–54. PMid:18183100 
  6. Masajada J, Leniec M, Drobczyński S, Thienpont H and Kress B, 2009. Micro-step localization using double charge optical vortex interferometer. Opt. Express. 17: 16144–16159. PMid:19724614 
  7. Masajada J, Leniec M, Jankowska E, Thienpont H, Ottevaere H and Gomez V, 2008. Deep microstructure topography characterization with optical vortex interferometer. Opt. Express. 16: 19179–19191. PMid:19582010 
  8. Wang W, Yokozeki T, Ishijima R, Takeda M and Hanson S G, 2006. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern. Opt. Express. 14: 10195–10206. PMid:19529415 
  9. Anzolin G, Tamburini F, Bianchini A and Barbieri C, 2009. Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam. Phys. Rev. A. 79: 033845.
  10. Mawet D, Riaud P, Absil O and Surdej J, 2005. Annular groove phase mask coronagraph. Astrophys. J. 633: 1191–1200.
  11. Swartzlander G A, Jr, 2009. The optical vortex coronagraph. J. Opt. A. 11: 094022.
  12. Tamburini F, Umbriaco G, Anzolin G, Barbieri C, Bianchini A, 2006. FrogEye, the quantum coronagraphic mask. The photon orbital angular momentum and its applications to astronomy. Mem. Soc. Astron. Ital. Suppl. 9: 484–485.
  13. Anzolin G, Tamburini F, Bianchini A, Umbriaco G and Barbieri C, 2008. Optical vortices with starlight. Astron. Astrophys. 488: 1159–1165.
  14. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S and Franke-Arnold S, 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express. 12: 5448–5456. PMid:19484105 
  15. Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124.
  16. Slussarenko S, Karimi E, Piccirillo B, Marrucci L and Santamato E, 2009. Universal unitary gate for single-photon spin-orbit four-dimensional states. Phys. Rev. A. 80: 022326.
  17. Fadeyeva T, Rubass A, Volyar A and Swatzlander G, 2008. Qudrefringence of optical vor-tices in uniaxial crystal. J. Opt. Soc. Amer. A. 25: 1643–1641.
  18. Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E and Sciarrino F, 2012. Spin-to-orbital optical angular momentum conversion in liquid crystal q-plates: classi-cal and quantum applications. Mol. Cryst. Liq. Cryst. 561: 48–56.
  19. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. PMid:21734730 
  20. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals. Phys. Rev. A. 84: 043815.
  21. Soroko L M. Holography and coherent optics. New York: Plenum Press, London (1980). PMid:7401912
  22. Goodman J W. Introduction to Fourier optics. New York: McGrow–Hill (1996).
  23. Solimar L and Cook D J. Volume holography and volume gratings. New York: Academic Press (1981).
  24. Basistiy I V, Soskin M S and Vasnetsov M V, 1995. Optical wavefront dislocations and their properties. Opt. Commun. 119: 604–612.
  25. Heckenberg N R, McDuff R, Smith C P, Rubinstein-Dunlop H and Wegener M J, 1992. Laser beams with phase singularities. Opt. Quant. Electron. 24: S951–S962.
  26. Bazhenov V Yu, Vasnetsov M V and Soskin M S, 1990. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52: 429–431.
  27. Rozas D, Law C T and Swartzlander G A, Jr, 1997. Propagation dynamics of optical vortices. J. Opt. Soc. Amer. B. 14: 3054–3065.
  28. Sacks Z S, Rozas D and Swartzlander G A, Jr, 1998. Holographic formation of optical-vortex filaments. J. Opt. Soc. Amer. B. 15: 2226–2234.
  29. Swartzlander G A, Jr, Optical vortex filaments. In: Optical vortices. Ed. by Vasnetsov M and Staliunas K. New York: Horizons in World Physics 228, Nova Science Publishers (1999).
  30. Pas'ko V A, Basistiy I V, Vasnetsov M V and Soskin M S, 2004. Analysis of optical vortex beams with integer and fractional topological charge. Proc. SPIE. 5477: 83–88.
  31. Basistiy I V, Pas'ko V A, Slyusar V V, Soskin M S and Vasnetsov M V, 2004. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A: Pure Appl. Opt. 6: S166–S169.
  32. Bekshaev A Ya and Karamoch A I, 2008. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281: 1366–1374.
  33. Bekshaev A Ya and Karamoch A I, 2008. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281: 3597–3610.
  34. Karimi E, Zito G, Piccirillo B, Marrucci L and Santamato E, 2007. Hypergeometric-Gaussian modes. Opt. Lett. 32: 3053–3055. PMid:17975594 
  35. Liu Yi-Dong, Gao Chun-Qing and Gao Ming-Wei, 2008. Study on holographic grating dif-fraction for Laguerre-Gaussian beam generation, Chinese Phys. B. 17: 1769–1776.
  36. Bekshaev A, Orlinska O and Vasnetsov M, 2010. Optical vortex generation with a "fork" hologram under conditions of high-angle diffraction. Opt. Commun. 283: 2006–2016.
  37. Bekshaev A Ya, Sviridova S V, Popov A Yu and Tyurin A V, 2012. Generation of optical vortex light beams by volume holograms with embedded phase singularity. Opt. Commun. 285: 4005–4014.
  38. Mair A, Vaziri A, Weihs G and Zeilinger A, 2001. Entanglement of the orbital angular momentum states of photons. Nature (London). 412: 313–316. PMid:11460157 
  39. Leach J, Jack B, Romero J, Ritsch-Marte M, Boyd R W, Jha A K, Barnett S M, Franke-Arnold S and Padgett M J, 2009. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Express. 17: 8287–8293. PMid:19434161
(c) Ukrainian Journal of Physical Optics