Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical vortex generation by volume holographic elements with embedded phase singularity: Effects of misalignments

Bekshaev A., Sviridova S., Popov A., Rimashevsky A. and Tyurin A.

Download this article

Abstract. Based on the linear theory for optical vortex (OV) formation in volume holographic elements (HE) with embedded phase singularity (A. Bekshaev et al., Opt. Commun. 285 (2012) 4005), we analyze theoretically the OV-beams obtained when the incident Gaussian beam axis deviates from the optical axis of the HE. For different displacements of the incident beam with respect to the HE centre, the spatial characteristics of the diffracted beams and their evolution during the post-HE propagation are investigated numerically with allowance for the radiation extinction in the HE depth. A special attention is paid to behaviour of the beam centroid (centre of gravity) trajectory. The sensitivity of the generated OV-beam profile to the incident beam misalignments can be used for the output beam shaping and control, in particular, for compensation of the OV-beam distortions associated with the light extinction

Keywords: optical vortex, volume hologram, misalignment, transformation, spatial structure, beam propagation

PACS: 42.25.Bs, 42.25.Fx, 42.40.Pa, 42.40.Eq, 42.50.Tx, 42.60.Jf, 42.90.+m
UDC: 535.41+535.42/.44
Ukr. J. Phys. Opt. 14 171-186
doi: 10.3116/16091833/14/4/171/2013
Received: 28.06.2013

Анотація. На основі лінійної теорії формування оптичних вихорів (ОВ) в об’ємних голографічних елементах (ГЕ) із вбудованою фазовою сингулярністю (A. Bekshaev et al., Opt. Commun. 285 (2012) 4005) теоретично аналізуються ОВ-пучки, одержані за умов, коли падаючий гаусів пучок відхиляється від оптичної осі ГЕ. Засобами чисельного аналізу розглянуто просторові характеристики та еволюцію дифрагованих пучків з урахуванням екстинкції падаючого випромінювання в товщі ГЕ. Особливу увагу надано поведінці центра тяжіння дифрагованого пучка. Показано, що завдяки зсувам падаючого пучка відносно осі ГЕ з’являється можливість цілеспрямовано керувати формою одержаного вихрового пучка, зокрема, для компенсації спотворень його профілю, обумовлених поглинанням та екстинкцією в ГЕ.

REFERENCES
  1. Soskin M S and Vasnetsov M V, 2001. Singular optics. Progr. Opt. 42: 219–276. http://dx.doi.org/10.1016/S0079-6638(01)80018-4
  2. Bekshaev A Ya, Soskin M S and Vasnetsov M V. Paraxial light beams with angular momentum. New York: Nova Science Publishers (2008). PMid:18669354 
  3. Nieminen T A, Higuet J, Knoner G, Loke V L Y, Parkin S, Singer W, Heckenberg N R and Rubinsztein-Dunlop H, 2006. Optically driven micromachines: progress and prospects. Proc. SPIE. 6038: 237–245.
  4. He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H, 1995. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75: 826–829. http://dx.doi.org/10.1103/PhysRevLett.75.826PMid:10060128 
  5. Simpson N B, Dholakia K, Allen L and Padgett M J, 1997. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22: 52–54. http://dx.doi.org/10.1364/OL.22.000052 PMid:18183100 
  6. Masajada J, Leniec M, Drobczyński S, Thienpont H and Kress B, 2009. Micro-step localization using double charge optical vortex interferometer. Opt. Express. 17: 16144–16159. http://dx.doi.org/10.1364/OE.17.016144 PMid:19724614 
  7. Masajada J, Leniec M, Jankowska E, Thienpont H, Ottevaere H and Gomez V, 2008. Deep microstructure topography characterization with optical vortex interferometer. Opt. Express. 16: 19179–19191.http://dx.doi.org/10.1364/OE.16.019179 PMid:19582010 
  8. Wang W, Yokozeki T, Ishijima R, Takeda M and Hanson S G, 2006. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern. Opt. Express. 14: 10195–10206. http://dx.doi.org/10.1364/OE.14.010195 PMid:19529415 
  9. Anzolin G, Tamburini F, Bianchini A and Barbieri C, 2009. Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam. Phys. Rev. A. 79: 033845.http://dx.doi.org/10.1103/PhysRevA.79.033845
  10. Mawet D, Riaud P, Absil O and Surdej J, 2005. Annular groove phase mask coronagraph. Astrophys. J. 633: 1191–1200. http://dx.doi.org/10.1086/462409
  11. Swartzlander G A, Jr, 2009. The optical vortex coronagraph. J. Opt. A. 11: 094022. http://dx.doi.org/10.1088/1464-4258/11/9/094022
  12. Tamburini F, Umbriaco G, Anzolin G, Barbieri C, Bianchini A, 2006. FrogEye, the quantum coronagraphic mask. The photon orbital angular momentum and its applications to astronomy. Mem. Soc. Astron. Ital. Suppl. 9: 484–485.
  13. Anzolin G, Tamburini F, Bianchini A, Umbriaco G and Barbieri C, 2008. Optical vortices with starlight. Astron. Astrophys. 488: 1159–1165. http://dx.doi.org/10.1051/0004-6361:200810469
  14. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S and Franke-Arnold S, 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express. 12: 5448–5456. http://dx.doi.org/10.1364/OPEX.12.005448 PMid:19484105 
  15. Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124. http://dx.doi.org/10.1063/1.3154549
  16. Slussarenko S, Karimi E, Piccirillo B, Marrucci L and Santamato E, 2009. Universal unitary gate for single-photon spin-orbit four-dimensional states. Phys. Rev. A. 80: 022326. http://dx.doi.org/10.1103/PhysRevA.80.022326
  17. Fadeyeva T, Rubass A, Volyar A and Swatzlander G, 2008. Qudrefringence of optical vor-tices in uniaxial crystal. J. Opt. Soc. Amer. A. 25: 1643–1641. http://dx.doi.org/10.1364/JOSAA.25.001634
  18. Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E and Sciarrino F, 2012. Spin-to-orbital optical angular momentum conversion in liquid crystal q-plates: classi-cal and quantum applications. Mol. Cryst. Liq. Cryst. 561: 48–56. http://dx.doi.org/10.1080/15421406.2012.686710
  19. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340.http://dx.doi.org/10.1364/JOSAA.28.001331 PMid:21734730 
  20. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals. Phys. Rev. A. 84: 043815. http://dx.doi.org/10.1103/PhysRevA.84.043815
  21. Soroko L M. Holography and coherent optics. New York: Plenum Press, London (1980). http://dx.doi.org/10.1007/978-1-4684-3420-0 PMid:7401912
  22. Goodman J W. Introduction to Fourier optics. New York: McGrow–Hill (1996).
  23. Solimar L and Cook D J. Volume holography and volume gratings. New York: Academic Press (1981).
  24. Basistiy I V, Soskin M S and Vasnetsov M V, 1995. Optical wavefront dislocations and their properties. Opt. Commun. 119: 604–612. http://dx.doi.org/10.1016/0030-4018(95)00267-C
  25. Heckenberg N R, McDuff R, Smith C P, Rubinstein-Dunlop H and Wegener M J, 1992. Laser beams with phase singularities. Opt. Quant. Electron. 24: S951–S962. http://dx.doi.org/10.1007/BF01588597
  26. Bazhenov V Yu, Vasnetsov M V and Soskin M S, 1990. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52: 429–431.
  27. Rozas D, Law C T and Swartzlander G A, Jr, 1997. Propagation dynamics of optical vortices. J. Opt. Soc. Amer. B. 14: 3054–3065. http://dx.doi.org/10.1364/JOSAB.14.003054
  28. Sacks Z S, Rozas D and Swartzlander G A, Jr, 1998. Holographic formation of optical-vortex filaments. J. Opt. Soc. Amer. B. 15: 2226–2234. http://dx.doi.org/10.1364/JOSAB.15.002226
  29. Swartzlander G A, Jr, Optical vortex filaments. In: Optical vortices. Ed. by Vasnetsov M and Staliunas K. New York: Horizons in World Physics 228, Nova Science Publishers (1999).
  30. Pas'ko V A, Basistiy I V, Vasnetsov M V and Soskin M S, 2004. Analysis of optical vortex beams with integer and fractional topological charge. Proc. SPIE. 5477: 83–88. http://dx.doi.org/10.1117/12.558807
  31. Basistiy I V, Pas'ko V A, Slyusar V V, Soskin M S and Vasnetsov M V, 2004. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A: Pure Appl. Opt. 6: S166–S169.http://dx.doi.org/10.1088/1464-4258/6/5/003
  32. Bekshaev A Ya and Karamoch A I, 2008. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281: 1366–1374. http://dx.doi.org/10.1016/j.optcom.2007.11.032
  33. Bekshaev A Ya and Karamoch A I, 2008. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281: 3597–3610.http://dx.doi.org/10.1016/j.optcom.2008.03.070
  34. Karimi E, Zito G, Piccirillo B, Marrucci L and Santamato E, 2007. Hypergeometric-Gaussian modes. Opt. Lett. 32: 3053–3055. http://dx.doi.org/10.1364/OL.32.003053 PMid:17975594 
  35. Liu Yi-Dong, Gao Chun-Qing and Gao Ming-Wei, 2008. Study on holographic grating dif-fraction for Laguerre-Gaussian beam generation, Chinese Phys. B. 17: 1769–1776. http://dx.doi.org/10.1088/1674-1056/17/5/037
  36. Bekshaev A, Orlinska O and Vasnetsov M, 2010. Optical vortex generation with a "fork" hologram under conditions of high-angle diffraction. Opt. Commun. 283: 2006–2016. http://dx.doi.org/10.1016/j.optcom.2010.01.012
  37. Bekshaev A Ya, Sviridova S V, Popov A Yu and Tyurin A V, 2012. Generation of optical vortex light beams by volume holograms with embedded phase singularity. Opt. Commun. 285: 4005–4014. http://dx.doi.org/10.1016/j.optcom.2012.06.010
  38. Mair A, Vaziri A, Weihs G and Zeilinger A, 2001. Entanglement of the orbital angular momentum states of photons. Nature (London). 412: 313–316. http://dx.doi.org/10.1038/35085529 PMid:11460157 
  39. Leach J, Jack B, Romero J, Ritsch-Marte M, Boyd R W, Jha A K, Barnett S M, Franke-Arnold S and Padgett M J, 2009. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Express. 17: 8287–8293. http://dx.doi.org/10.1364/OE.17.008287 PMid:19434161
(c) Ukrainian Journal of Physical Optics
141AF9D;A98E4D