Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optically pumped mirrorless lasing. A review. 
Part I. Random lasing 

Nastishin Yu. A. and Dudok T. H. 

Download this article

Abstract. Currently optically pumped mirrorless lasing is represented by three distinct branches, which concern lasing in different types of the gain media: optically random and photonic media, and microcavities. This article is a first part of our review on optically pumped mirrorless lasing, with the random lasing in scattering media being a main subject. The other mirrorless lasing mechanisms will be addressed in the second part. Considering light localization as a key function of the feedback, we discuss possible mechanisms for the light localization in the scattering media. Special attention is paid to the Anderson light localization. The other mechanisms of the light localization in the scattering media concern high Q-resonances in local microresonators, which exist due to structural inhomogeneities in the scattered media. Applications of the random lasers are shortly reviewed.

Keywords: mirrorless lasing, mirrorless lasers, random lasing, random lasers, light localization, optical feedback, amplified spontaneous emission, superfluorescence, superrradiance
 

PACS: 42.55.Zz; 42.55.Sa; 42.55.Tv; 42.60.Da; 42.55.Mv; 42.70.Hj; 42.25.Dd/
UDC: 535.37+535.35+681.7.069.24+52-626
Ukr. J. Phys. Opt. 14 146-170
doi: 10.3116/16091833/14/3/146/2013
Received: 27.06.2013

Анотація. На даний час бездзеркальна лазерна генерація з оптичним нагнітанням представлена трьома окремими напрямами, які стосуються лазерної генерації активних середовищ різних типів: оптично випадкових середовищах, фотонних середовищах і мікрорезонаторах. Ця стаття є першою частиною огляду літератури з бездзеркальної лазерної генерації з оптичним нагнітанням. Її предмет – випадкова лазерна генерація в розсіювальних середовищах. Інші механізми бездзеркальної лазерної генерації буде обговорено в другій частині огляду. Розглядаючи локалізацію світла як ключову функцію зворотного зв’язку, ми з’ясовуємо можливі механізми локалізації світла в розсіювальних середовищах. Особливу увагу надано локалізації світла за Андерсоном. Інші механізми локалізації світла в розсіювальних середовищах стосуються високодобротних резонансів в локальних мікрорезонаторах, що існують за рахунок неоднорідності розсіювального середовища. Коротко розглянуто застосування випадкових лазерів.

REFERENCES
  1. Milonni P W and Eberly J H. Laser physics (New Jersey: John Wiley & Sons Inc. Hoboken, 2010). doi:10.1002/9780470409718
  2. Fork R L and Taylor D W, 1979. Unusual optical emission from microcrystals containing Eu+2: Experiment. Phys. Rev. B. 19: 3365–3400. doi:10.1103/PhysRevB.19.3365 
  3. Markushev V M, Zolin V F and Briskina Ch M, 1986. Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders. Sov. J. Quant. Electron. 16 (2): 281–283. doi:10.1070/QE1986v016n02ABEH005792 
  4. Gottardo S, Sapienza R, Garsia P D, Blanco A, Wiersma D S and Lopez C, 2008. Resonance-driven random lasing. Nature Photonics. 5: 429–432. doi:10.1038/nphoton.2008.102 
  5. Humar M and Musevic I, 2010. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt. Express. 18: 26995–27003. 
    doi:10.1364/OE.18.026995 PMid:21196976 
  6. Gottardo S, Cavalieri S, Yaroshchuk O and Wiersma D S, 2004. Quasi-twodimensional diffusive random laser action. Phys. Rev. Lett. 93: 263901–4. doi:10.1103/PhysRevLett.93.263901 PMid:15697980 
  7. Jin C, Meng X, Cheng B, Li Zh and Zhang D, 2001. Photonic gap in amorphous photonic materials. Phys. Rev. B. 63: 195107–5. doi:10.1103/PhysRevB.63.195107 
  8. Notomi M, Suzuki H, Tamamura T and Edagawa K, 2004. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice. Phys. Rev. Lett. 92: 123906–4. doi:10.1103/PhysRevLett.92.123906 PMid:15089676 
  9. Nozaki K and Baba T, 2004. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett. 84: 4875–4877. doi:10.1063/1.1762705 
  10. Wiersma D S, 2008. The physics and applications of random lasers. Nature Phys. 4: 359–367. doi:10.1038/nphys971 
  11. Ramachndran H, 2002. Mirrorless lasers. Pramana – J. Phys. 58: 313–323. 
  12. Coles H and Morris S, 2010. Liquid-crystal lasers. Nature Photonics. 4: 676–685. doi:10.1038/nphoton.2010.184 
  13. Matsko A B, Savchenkov A A, Strekalov D, Ilchenko V S and Maleki L, 2005. Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics. IPN Progress Rep. 42–162: 1–51. 
  14. Chiasera A, Dumeige Ya, F’eron P, Ferrari M, Jestin Y, Conti G N, Pelli S, Soria S and Righini G C, 2010. Spherical whispering-gallery-mode microresonators. Laser Photon. Rev. 4: 457–482. doi:10.1002/lpor.200910016 
  15. Wiersma D S, van Albada, M P and Lagendijk Ad, 1995. Random laser? Nature. 373: 203–204. doi:10.1038/373203b0 
  16. Wiersma D S and Lagendijk Ad, 1996. Light diffusion with gain and random lasers. Phys. Rev. E. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256 PMid:9965573 
  17. Ambartsumyan R V, Basov N G, Kryukov P G and Letokhov V S, 1966. Laser with nonresonant feedback. JETP Lett. 3: 167–169. 
  18. Ambartsumyan R V, Basov N G, Kryukov P G and Letokhov V S, 1966. A laser with a nonresonant feedback. IEEE J. Quant. Electron. 2: 442–446. doi:10.1109/JQE.1966.1074123 
  19. The site http://home.achilles.net/~talbot/amateur/WolfRayet.html to which the author of Ref. [11] refers, seems to move to the address http://laserstars.org/amateur/WolfRayet.html 
  20. Letokhov V S, 2002. Lasing in space. Sov. Phys.: Uspekhi. 45: 1306–1309. doi:10.1070/PU2002v045n12ABEH001326 
  21. Johansson S and Letokhov V S, 2002. Laser action in a gas condensation in the vicinity of a hot star. JETP Lett. 75: 591–594 (see also the website http://laserstars.org/news/EtaCarinae.html) doi:10.1134/1.1497875 
  22. Letokhov V. S and Johansson S. Astrophysical lasers (New York: Oxford University Press, 2009). 
  23. Varshalovich D A, 1966. Coherent amplification of radio emission in a cosmic medium. JETP Lett. 4: 124–125. 
  24. Letokhov V S, 1966. Stimulated radio emission of the interstellar medium. JETP Lett. 4: 321–323. 
  25. Bowen I S, 1934. The excitation of the permitted OIII nebular lines. Publ. Astronom. Soc. of the Pacific. 46: 146–150. doi:10.1086/124435 
  26. Bowen I S, 1935. The spectrum and composition of the gaseous nebulae. Astrophys. J. 81: 1–16. doi:10.1086/143613 
  27. Ambartsumyan R V, Kryukov P G, Letokhov V S and Matveev Yu A, 1967. Emission statistics of a laser with nonresonant feedback. JETP Lett. 5: 312–314. 
  28. Zaitsev O and Deych L, 2010. Recent developments in the theory of multimode random lasers. J. Opt. 12: 024001–14. doi:10.1088/2040-8978/12/2/024001 
  29. Letokhov V S, 1967. Stimulated emission of scattering particles with negative absorption. JETP Lett. 5: 212–215. 
  30. Letokhov V S, 1968. Generation of light by a scattering medium with negative resonance absorption. JETP. 26: 835–840. 
  31. Ambartsumyan R V, Kryukov P G and Letokhov V S, 1967. Dynamics of emission line narrowing for a laser with nonresonant feedback. JETP. 24: 1129–1134. 
  32. Wiersma D and Lagendijk Ad, 1996. Light diffusion with gain and random lasers. Phys. Rev. E. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256 PMid:9965573 
  33. John S, 1984. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53: 2169–2172. doi:10.1103/PhysRevLett.53.2169 
  34. John S, 1991. Localization of light. Phys. Today. 44: 32–40. doi:10.1063/1.881300 
  35. Leigh J R, Control theory, 2nd ed. (London: The Institution of Electrical Engineers, 2004). 
  36. Milner V and Genack A Z, 2005. Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett. 94: 073901–4. doi:10.1103/PhysRevLett.94.073901 PMid:15783816 
  37. John S, 1987. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58: 2486–2489.doi:10.1103/PhysRevLett.58.2486 PMid:10034761 
  38. Anderson P W, 1958. Absence of diffusion in certain random lattices. Phys. Rev. 109: 1492–1505. doi:10.1103/PhysRev.109.1492 
  39. Mott N F, 1967. Electrons in disordered structures. Adv. Phys. 16: 49–144. doi:10.1080/00018736700101265 
  40. Skipetrov S E and Sokolov I M, Absence of Anderson localization of light in a random ensemble of point scatterers. ArXiv:1303.4655v1 [physics.optics] 19 Mar 2013. 
  41. Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V, 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42: 673–676.doi:10.1103/PhysRevLett.42.673 
  42. Khmel'nitskii D E, 1984. Localization and coherent scattering of electrons. Physica B. 126: 239–241. 
  43. Maksimenko V V, Krikunov V A and Lushnikov A A, 1992. Strong localization of light in a closely packed granular medium. JETP. 75: 848–856. 
  44. Yablonovitch E, 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58: 2059–2062. doi:10.1103/PhysRevLett.58.2059 PMid:10034639 
  45. Yablonovitch E, 2001. Photonic crystals: semiconductors of light. Sci. American. 285: 47–55. doi:10.1038/scientificamerican1201-46 PMid:11759585 
  46. Stőrzer M, Gross P, Aegerter Ch. M and Maret G, 2006. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96: 063904–4. doi:10.1103/PhysRevLett.96.063904 PMid:16605998 
  47. Segev M, Silberberg Ya and Christodoulides D N, 2013. Anderson localization of light. Nature Photonics. 7: 197–204. doi:10.1038/nphoton.2013.30 
  48. Chabanov A A, Stoytchev M and Genack A Z, 2000. Statistical signatures of photon localization. Nature. 404: 850–853. doi:10.1038/35009055 PMid:10786786 
  49. Wőlfe P and Vollhardty D, Self-consistent theory of Anderson localization: general formalism and applications, In '50 years of Anderson localization', Ed. by E. Abrahams (Singapore: World Scientific Publishing Co. Pte. Ltd, 2010). 
  50. John S, Sompolinsky H and Stephen M. J, 1983. Localization in a disordered elastic medium near two dimensions. Phys. Rev. B. 27: 5592–5603. doi:10.1103/PhysRevB.27.5592 
  51. John S and Stephen M J, 1983. Wave propagation and localization in a long-range correlated random potential. Phys. Rev. B. 28: 6358–6368. doi:10.1103/PhysRevB.28.6358
  52. Azbel M Ya and Soven P, 1983. Transmission resonances and the localization length in one-dimensional disordered systems. Phys. Rev. B. 27: 831–835. doi:10.1103/PhysRevB.27.831 
  53. Zyuzin A Yu, 1994. Weak localization in backscattering from an amplifying medium. Europhys. Lett. 26 (7): 517–520. doi:10.1209/0295-5075/26/7/007 
  54. Wiersma D S, van Albada M P and Lagendijk Ad, 1995. Coherent backscattering of light from amplifying random media. Phys. Rev. Lett. 75: 1739–1742. doi:10.1103/PhysRevLett.75.1739 PMid:10060379 
  55. Van Albada M P and Lagendijk Ad, 1985. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55: 2692–2695. doi:10.1103/PhysRevLett.55.2692 PMid:10032213 
  56. Wolf P-E and Maret G, 1985. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55: 2696–2699. doi:10.1103/PhysRevLett.55.2696 PMid:10032214 
  57. Wiersma D S, Bartolini P, Lagendijk A and Righini R, 1997. Localization of light in a disordered medium. Nature. 390: 671–673. doi:10.1038/37757 
  58. Anderson P W, 1985. The question of classical localization. A theory of white paint? Phil. Mag. B. 52: 505–509. hdoi:10.1080/13642818508240619 
  59. Dicke R H, 1954. Coherence in spontaneous radiation processes. Phys. Rev. 93: 99–110. doi:10.1103/PhysRev.93.99 
  60. Bonifacio R and Lugiato L A, 1975. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A. 11: 1507–1521. doi:10.1103/PhysRevA.11.1507 
  61. Arecchi F T and Courtens E, 1970. Cooperative phenomena in resonant electromagnetic propagation. Phys. Rev. A. 2: 1730–1737. doi:10.1103/PhysRevA.2.1730 
  62. MacGillivray J C and Feld M S, 1976. Theory of superradiance in an extended, optically thick medium. Phys. Rev. A. 14: 1169–1189. doi:10.1103/PhysRevA.14.1169 
  63. Scully M O and Svidzinsky A A, 2009. The super of superradiance. Science. 325: 1510–1511. doi:10.1126/science.1176695 PMid:19762635 
  64. Maki J J, Malcuit M S, Raymer M G and Boydl R W, 1989. Influence of collisional dephasing processes on superfluorescence. Phys. Rev. A. 40: 5135–5142. doi:10.1103/PhysRevA.40.5135 PMid:9902776 
  65. Rehler N E and Eberly J H, 1971. Superradiance. Phys. Rev. A. 3: 1735–1751. doi:10.1103/PhysRevA.3.1735 
  66. Bonifacio R and Lugiato L. A, 1975. Cooperative radiation processes in two-level systems: superfluorescence. II. Phys. Rev. A. 12: 587–598. doi:10.1103/PhysRevA.12.587 
  67. Bonifacio R, Schwendimann P and Haake F, 1971. Quantum statistical theory of superradiance. I. Phys. Rev. A. 4: 302–313. doi:10.1103/PhysRevA.4.302 
  68. Malcuit M S, Maki J J, Simkin D J and Boyd R W, 1987. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59: 1189–1192. doi:10.1103/PhysRevLett.59.1189 PMid:10035166 
  69. Frolov S V, Vardeny Z V and Yoshino K, 1998. Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Phys. Rev. B. 57: 9141–9147. doi:10.1103/PhysRevB.57.9141 
  70. Genack A Z and Drake J M, 1994. Scattering for superradiance. Nature. 368: 400–401. doi:10.1038/368400a0 
  71. Zhang Zh-Q, 1995. Light amplification and localization in randomly layered media with gain. Phys. Rev. B. 52, 7960–7964. doi:10.1103/PhysRevB.52.7960 
  72. Wiersma D S and Lagendijk Ad, 1996. Light diffusion with gain and random lasers. Phys. Rev. B. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256 
  73. John S and Pang G, 1996. Theory of lasing in a multiple-scattering medium. Phys. Rev. A. 54: 3642–3652. doi:10.1103/PhysRevA.54.3642 PMid:9913892 
  74. Thouless D J, 1977. Maximum metallic resistance in thin wires. Phys. Rev. Lett. 18: 1167–1169. doi:10.1103/PhysRevLett.39.1167 
  75. Genack A Z, 1990. Universality of wave propagation in random media. Europhys. Lett. 11: 733–738. doi:10.1209/0295-5075/11/8/007 
  76. Ahmed S A, Zang Zh-W, Yoo K M, Ali M A and Alfano R R, 1994. Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media. Appl. Opt. 33: 2746–2750.doi:10.1364/AO.33.002746 PMid:20885633 
  77. Frolov S V, Vardeny Z V, Yoshino K, Zakhidov A and Baughman R H, 1999. Stimulated emission in high-gain organic media. Phys. Rev. B. 59: R5284–R5287. doi:10.1103/PhysRevB.59.R5284 
  78. Apalkov V M, Raikh M E and Shapiro B, 2002. Random resonators and prelocalized modes in disordered dielectric films. Phys. Rev. Lett. 89: 016802–4. doi:10.1103/PhysRevLett.89.016802 PMid:12097060 
  79. Mujumdar S, Ricci M, Torre R and Wiersma D S, 2004. Amplified extended modes in random lasers. Phys. Rev. Lett. 93: 053903–4. doi:10.1103/PhysRevLett.93.053903 PMid:15323697 
  80. Pinheiro F A and Sampaio L C, 2006. Lasing threshold of diffusive random lasers in three dimensions. Phys. Rev. A. 73: 013826–4. doi:10.1103/PhysRevA.73.013826 
  81. Cao H, 2003. Lasing in random media. Waves in Random Media. 13: R1–R39. doi:10.1088/0959-7174/13/3/201 
  82. Tessler N, Denton G J and Friend R H, 1996. Lasing from conjugated-polymer microcavities. Nature. 382: 695–697. doi:10.1038/382695a0 
  83. Hide F, Diaz-Garcia M A, Schwartz B J, Andersson M R, Pei Q and Heeger A J, 1996. Semi-conducting polymers: A new class of solid-state laser materials. Science. 273: 1833–1836. doi:10.1126/science.273.5283.1833 
  84. Brouwer H J, Krasnikov V I, Hilberer A and Hadziioannou G, 1996. Blue superradiance from neat semiconducting alternating copolymer films. Adv. Mater. 8: 935–937. doi:10.1002/adma.19960081116 
  85. Gelinck G H, Warman J M, Remmers M and Neher D, 1997. Narrow-band emissions from conjugated-polymer films. Chem. Phys. Lett. 265: 320–326. doi:10.1016/S0009-2614(96)01447-9 
  86. Frolov S V, Gellermann W, Ozaki M, Yoshino K and Vardeny Z V, 1997. Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78: 729–732. doi:10.1103/PhysRevLett.78.729 
  87. Long X, Malinowski A, Bradley D D C, Inbasekaran M and Woo E P, 1997. Emission processes in conjugated polymer solutions and thin films. Chem. Phys. Lett. 265: 320–326. doi:10.1016/S0009-2614(96)01447-9 
  88. Gouedard C, Husson D, Sauteret C, 1993. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B. 10: 2358-2363. doi:10.1364/JOSAB.10.002358 
  89. Williams G R, Bayram S B, Rand S C, Hinklin T and Laine R M, 2002. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys. Rev. A. 65: 013807–6. doi:10.1103/PhysRevA.65.013807 
  90. Zhang D, Cheng B, Yang J, Zhang Y, Hu W and Li Zh, 1995. Narrow-bandwidth emission from a suspension of dye and scatterers. Opt. Commun. 118: 462–465. doi:10.1016/0030-4018(95)00259-B 
  91. Sha W L, Liu C-H and Alfano R R, 1994. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media. Opt. Lett. 19: 1922–1924. doi:10.1364/OL.19.001922 PMid:19855696 
  92. Balachandran R M and Lawandy N M, 1995. Interface reflection effects in photonic paint. Opt. Lett. 20: 1271–1273. doi:10.1364/OL.20.001271 PMid:19859496 
  93. Zhang D, Cheng B, Yang Ju, Zhang Yu, Hu W and Li Zh, 1995. Narrow-bandwidth emission from a suspension of dye and scatterers. Opt. Commun. 118: 462–465. doi:10.1016/0030-4018(95)00259-B 
  94. Wiersma D S, van Albada M P and Lagendijk Ad, 1995. Random laser? Nature. 373: 203–204. doi:10.1038/373203b0 
  95. Lavandy N M and Balachandran R M, 1995. Random laser? Reply. Nature. 373: 204. doi:10.1038/373204a0 
  96. Lavandy N M, Balachandran R M, Gomes A S L and Sauvain E, 1994. Laser action in strongly scattering media. Nature. 368: 436–438. doi:10.1038/368436a0 
  97. Ter-Garielyan N E, Markushev V M, Belan V R, Briskina Ch M, Dimitrova O V, Zolin V F and Lavrov A V, 1991. Stimulated radiation emitted by lithium neodymium tetraphosphate LiNd (PO3)4 and neodymium pentaphosphate NdP5O14 powders. Sov. J. Quant. Electron. 21: 840–842. doi:10.1070/QE1991v021n08ABEH003967 
  98. Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y and Chang R P H, 1998. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73: 3656–3658. doi:10.1063/1.122853 
  99. Cao H, Zhao Y G, Ho S T, Seelig E W, Wang Q H and Chang R P H, 1999. Random laser action in semiconductor powder. Phys. Rev. Lett. 82: 2278–2281. doi:10.1103/PhysRevLett.82.2278 
  100. Cao H, Xu J Y, Chang S-H and Ho S T, 2000. Transition from amplified spontaneous emis-sion to laser action in strongly scattering media. Phys. Rev. E. 61: 1985–1989. doi:10.1103/PhysRevE.61.1985 PMid:11046486 
  101. Cao H, Xu J Y, Zhang D Z, Chang S-H, Ho S T, Seelig E W, Liu X and Chang R P H, 2000. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84: 5584–5587. doi:10.1103/PhysRevLett.84.5584 PMid:10991000 
  102. Cao H, Ling Y, Xu J Y, Cao C Q and Kumar P, 2001. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86: 4524–4527. doi:10.1103/PhysRevLett.86.4524 PMid:11384274 
  103. Wiersig J, Unterhinninghofen J, Song Q, Cao H, Hentschel M and Shinohara S, Chapter 4. Review on unidirectional light emission from ultralow-loss modes in deformed microdisks. In: Trends in nano- and micro-cavities. Ed. by O'Dae Kwon and Byoungho Lee (Kyungwon An. Bentham Science Publishers Ltd., 2011) 109–152. 
  104. Yamilov A and Cao H, Chap. 44. Self-optimization of optical confinement and lasing action in disordered photonic crystals. In: Optical properties of photonic structures: interplay of order and disorder. Ed. by M F Limonov and R De La Rue (Abingdon: Taylor and Francis Group, 2012) 395–414. 
  105. Cao H and Noh H, Chap. 9. Lasing in amorphous nanophotonic structures. In: Amorphous nanophotonics. Ed. by C Rockstuhl and T Scharf (Berlin Heidelberg: Springer, 2013) 227–265. doi:10.1007/978-3-642-32475-8_9 
  106. Cao H, 2005. Review on latest developments in random lasers with coherent feedback. J. Phys. A: Math. Gen. 38: 10497–10535. doi:10.1088/0305-4470/38/49/004 
  107. Sebbah P and Vanneste C, 2002. Random laser in the localized regime. Phys. Rev. B. 66: 144202–10. doi:10.1103/PhysRevB.66.144202 
  108. Smuk A, Lazaro E, Olson L P and Lawandy N M, 2011. Random laser action in bovine se-men. Opt. Commun. 284: 1257–1258. doi:10.1016/j.optcom.2010.11.004 
  109. Van der Molen K L, Tjerkstra R W, Mosk A P and Lagendijk Ad, 2007. Spatial extent of random laser modes. Phys. Rev. Lett. 98: 143901–4. doi:10.1103/PhysRevLett.98.143901 PMid:17501274 
  110. Tűreci H E, Stone A D and Collier B, 2006. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A. 74: 043822–17. doi:10.1103/PhysRevA.74.043822 
  111. Tűreci H E, Stone A D and Ge L, 2007. Theory of the spatial structure of nonlinear lasing modes. Phys. Rev. A. 76: 013813–4. doi:10.1103/PhysRevA.76.013813 
  112. Tűreci H E, Ge L, Rotter S and Stone A D, 2008. Strong interactions in multimode random lasers. Science. 320: 643–646. doi:10.1126/science.1155311 PMid:18451297 
  113. Haken H and Sauermann H, 1963. Nonlinear interaction of laser modes. Z. Phys. 173: 261–275. doi:10.1007/BF01377828 
  114. Leonetti M, Conti C and Lopez C, 2001. The mode-locking transition of random lasers. Nature Photonics. 2: 615–617. 
  115. Bergman D J and Stockman M I, 2003. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90: 027402–4. doi:10.1103/PhysRevLett.90.027402 PMid:12570577 
  116. Stockman M I, 2011. Nanoplasmonics: past, present, and glimpse into future. Opt. Express. 19: 22029–22106. doi:10.1364/OE.19.022029 PMid:22109053 
  117. Stockman M I, 2010. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12: 024004–13. doi:10.1088/2040-8978/12/2/024004 
  118. Noginov M A, Zhu G., Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U, 2009. Demonstration of a spaser-based nanolaser. Nature. 460: 1110–1113. doi:10.1038/nature08318 PMid:19684572 
  119. Stockman M I, 2008. Spasers explained. Nature Photonics. 2: 327–329. doi:10.1038/nphoton.2008.85 
  120. Zheludev N, Prosvirnin S, Papasimakis N and Fedotov V, 2008. Lasing spaser. Nature Photonics. 2: 351–354. doi:10.1038/nphoton.2008.82 
  121. Redding B, Choma M A and Cao H, 2012. Speckle-free laser imaging using random laser illumination. Nature Photonics. 6: 355–359. doi:10.1038/nphoton.2012.90 
  122. Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P, 2008. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics. 2: 728–732. doi:10.1038/nphoton.2008.227 
  123. http://phys.org/news148660964.html 
  124. http://www.sciencedaily.com/releases/2008/05/080523074709.htm 
  125. Cao H, 2005. Random lasers: Development, features and applications. Optics and Photonics News. 16: 24–29. doi:10.1364/OPN.16.1.000024 
  126. Polson R C and Vardeny Z V, 2004. Random lasing in human tissues. Appl. Phys. Lett. 85: 1289–1291. doi:10.1063/1.1782259 
  127. Jeong K-Y, Lee Y-H, Cao H and Yang J-K, 2012. Lasing in localized mode at optimized photonic amorphous structure. Appl. Phys. Lett. 101: 091101–4. doi:10.1063/1.4748109 
  128. Simonis P and Berthier S, 2012. How nature produces blue color. In: Photonic Crystals – In-troduction. Ed. by A. Massaro, Applications and Theory. (Rijeka: InTech). 3–24. 
  129. Saranathan V, Forster J D, Noh H, Liew S-F, Mochrie S G J, Cao H, Dufresne E R and Prum R O, 2012. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. J. R. Soc. Interface. 9: 2563–2580. doi:10.1098/rsif.2012.0191 PMid:22572026 
  130. Yang J-K, Boriskina S V, Noh H, Rooks M J, Solomon G S, Negro L D and Cao H, 2010. Demonstration of laser action in a pseudorandom medium. Appl. Phys. Lett. 97: 223101–3. doi:10.1063/1.3519844
  131. Mahler L, Tredicucci A, Beltram F, Walther Ch, Faist J, Beere H E, Ritchie D A and Wiersma D S, 2010. Quasi-periodic distributed feedback laser. Nature Photonics. 4: 365–369. doi:10.1038/nphoton.2009.285
  132. Segev M, Silberberg Ya and Christodoulides D N, 2013. Anderson localization of light. Nature Photonics. 7: 197–204. doi:10.1038/nphoton.2013.30
(c) Ukrainian Journal of Physical Optics