Home
page
Other articles
in this issue |
Optically pumped
mirrorless lasing. A review.
Part I. Random lasing
Nastishin Yu. A. and Dudok T. H.
Download this
article
Abstract. Currently optically pumped mirrorless lasing is represented
by three distinct branches, which concern lasing in different types of
the gain media: optically random and photonic media, and microcavities.
This article is a first part of our review on optically pumped mirrorless
lasing, with the random lasing in scattering media being a main subject.
The other mirrorless lasing mechanisms will be addressed in the second
part. Considering light localization as a key function of the feedback,
we discuss possible mechanisms for the light localization in the scattering
media. Special attention is paid to the Anderson light localization. The
other mechanisms of the light localization in the scattering media concern
high Q-resonances in local microresonators, which exist due to structural
inhomogeneities in the scattered media. Applications of the random lasers
are shortly reviewed.
Keywords: mirrorless lasing, mirrorless lasers,
random lasing, random lasers, light localization, optical feedback, amplified
spontaneous emission, superfluorescence, superrradiance
PACS: 42.55.Zz; 42.55.Sa; 42.55.Tv; 42.60.Da;
42.55.Mv; 42.70.Hj; 42.25.Dd/
UDC: 535.37+535.35+681.7.069.24+52-626
Ukr. J. Phys. Opt.
14 146-170
doi: 10.3116/16091833/14/3/146/2013
Received: 27.06.2013
Анотація. На даний час бездзеркальна
лазерна генерація з оптичним нагнітанням
представлена трьома окремими напрямами,
які стосуються лазерної генерації активних
середовищ різних типів: оптично випадкових
середовищах, фотонних середовищах і мікрорезонаторах.
Ця стаття є першою частиною огляду літератури
з бездзеркальної лазерної генерації з
оптичним нагнітанням. Її предмет – випадкова
лазерна генерація в розсіювальних середовищах.
Інші механізми бездзеркальної лазерної
генерації буде обговорено в другій частині
огляду. Розглядаючи локалізацію світла
як ключову функцію зворотного зв’язку,
ми з’ясовуємо можливі механізми локалізації
світла в розсіювальних середовищах. Особливу
увагу надано локалізації світла за Андерсоном.
Інші механізми локалізації світла в розсіювальних
середовищах стосуються високодобротних
резонансів в локальних мікрорезонаторах,
що існують за рахунок неоднорідності розсіювального
середовища. Коротко розглянуто застосування
випадкових лазерів. |
|
REFERENCES
-
Milonni P W and Eberly J H. Laser physics (New Jersey: John Wiley &
Sons Inc. Hoboken, 2010). doi:10.1002/9780470409718
-
Fork R L and Taylor D W, 1979. Unusual optical emission from microcrystals
containing Eu+2: Experiment. Phys. Rev. B. 19: 3365–3400. doi:10.1103/PhysRevB.19.3365
-
Markushev V M, Zolin V F and Briskina Ch M, 1986. Luminescence and stimulated
emission of neodymium in sodium lanthanum molybdate powders. Sov. J. Quant.
Electron. 16 (2): 281–283. doi:10.1070/QE1986v016n02ABEH005792
-
Gottardo S, Sapienza R, Garsia P D, Blanco A, Wiersma D S and Lopez C,
2008. Resonance-driven random lasing. Nature Photonics. 5: 429–432. doi:10.1038/nphoton.2008.102
-
Humar M and Musevic I, 2010. 3D microlasers from self-assembled cholesteric
liquid-crystal microdroplets. Opt. Express. 18: 26995–27003.
doi:10.1364/OE.18.026995
PMid:21196976
-
Gottardo S, Cavalieri S, Yaroshchuk O and Wiersma D S, 2004. Quasi-twodimensional
diffusive random laser action. Phys. Rev. Lett. 93: 263901–4. doi:10.1103/PhysRevLett.93.263901
PMid:15697980
-
Jin C, Meng X, Cheng B, Li Zh and Zhang D, 2001. Photonic gap in amorphous
photonic materials. Phys. Rev. B. 63: 195107–5. doi:10.1103/PhysRevB.63.195107
-
Notomi M, Suzuki H, Tamamura T and Edagawa K, 2004. Lasing action due to
the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose
lattice. Phys. Rev. Lett. 92: 123906–4. doi:10.1103/PhysRevLett.92.123906
PMid:15089676
-
Nozaki K and Baba T, 2004. Quasiperiodic photonic crystal microcavity lasers.
Appl. Phys. Lett. 84: 4875–4877. doi:10.1063/1.1762705
-
Wiersma D S, 2008. The physics and applications of random lasers. Nature
Phys. 4: 359–367. doi:10.1038/nphys971
-
Ramachndran H, 2002. Mirrorless lasers. Pramana – J. Phys. 58: 313–323.
-
Coles H and Morris S, 2010. Liquid-crystal lasers. Nature Photonics. 4:
676–685. doi:10.1038/nphoton.2010.184
-
Matsko A B, Savchenkov A A, Strekalov D, Ilchenko V S and Maleki L, 2005.
Review of applications of whispering-gallery mode resonators in photonics
and nonlinear optics. IPN Progress Rep. 42–162: 1–51.
-
Chiasera A, Dumeige Ya, F’eron P, Ferrari M, Jestin Y, Conti G N, Pelli
S, Soria S and Righini G C, 2010. Spherical whispering-gallery-mode microresonators.
Laser Photon. Rev. 4: 457–482. doi:10.1002/lpor.200910016
-
Wiersma D S, van Albada, M P and Lagendijk Ad, 1995. Random laser? Nature.
373: 203–204. doi:10.1038/373203b0
-
Wiersma D S and Lagendijk Ad, 1996. Light diffusion with gain and random
lasers. Phys. Rev. E. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256
PMid:9965573
-
Ambartsumyan R V, Basov N G, Kryukov P G and Letokhov V S, 1966. Laser
with nonresonant feedback. JETP Lett. 3: 167–169.
-
Ambartsumyan R V, Basov N G, Kryukov P G and Letokhov V S, 1966. A laser
with a nonresonant feedback. IEEE J. Quant. Electron. 2: 442–446. doi:10.1109/JQE.1966.1074123
-
The site http://home.achilles.net/~talbot/amateur/WolfRayet.html
to which the author of Ref. [11] refers, seems to move to the address http://laserstars.org/amateur/WolfRayet.html
-
Letokhov V S, 2002. Lasing in space. Sov. Phys.: Uspekhi. 45: 1306–1309.
doi:10.1070/PU2002v045n12ABEH001326
-
Johansson S and Letokhov V S, 2002. Laser action in a gas condensation
in the vicinity of a hot star. JETP Lett. 75: 591–594 (see also the website
http://laserstars.org/news/EtaCarinae.html)
doi:10.1134/1.1497875
-
Letokhov V. S and Johansson S. Astrophysical lasers (New York: Oxford University
Press, 2009).
-
Varshalovich D A, 1966. Coherent amplification of radio emission in a cosmic
medium. JETP Lett. 4: 124–125.
-
Letokhov V S, 1966. Stimulated radio emission of the interstellar medium.
JETP Lett. 4: 321–323.
-
Bowen I S, 1934. The excitation of the permitted OIII nebular lines. Publ.
Astronom. Soc. of the Pacific. 46: 146–150. doi:10.1086/124435
-
Bowen I S, 1935. The spectrum and composition of the gaseous nebulae. Astrophys.
J. 81: 1–16. doi:10.1086/143613
-
Ambartsumyan R V, Kryukov P G, Letokhov V S and Matveev Yu A, 1967. Emission
statistics of a laser with nonresonant feedback. JETP Lett. 5: 312–314.
-
Zaitsev O and Deych L, 2010. Recent developments in the theory of multimode
random lasers. J. Opt. 12: 024001–14. doi:10.1088/2040-8978/12/2/024001
-
Letokhov V S, 1967. Stimulated emission of scattering particles with negative
absorption. JETP Lett. 5: 212–215.
-
Letokhov V S, 1968. Generation of light by a scattering medium with negative
resonance absorption. JETP. 26: 835–840.
-
Ambartsumyan R V, Kryukov P G and Letokhov V S, 1967. Dynamics of emission
line narrowing for a laser with nonresonant feedback. JETP. 24: 1129–1134.
-
Wiersma D and Lagendijk Ad, 1996. Light diffusion with gain and random
lasers. Phys. Rev. E. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256
PMid:9965573
-
John S, 1984. Electromagnetic absorption in a disordered medium near a
photon mobility edge. Phys. Rev. Lett. 53: 2169–2172. doi:10.1103/PhysRevLett.53.2169
-
John S, 1991. Localization of light. Phys. Today. 44: 32–40. doi:10.1063/1.881300
-
Leigh J R, Control theory, 2nd ed. (London: The Institution of Electrical
Engineers, 2004).
-
Milner V and Genack A Z, 2005. Photon localization laser: Low-threshold
lasing in a random amplifying layered medium via wave localization. Phys.
Rev. Lett. 94: 073901–4. doi:10.1103/PhysRevLett.94.073901
PMid:15783816
-
John S, 1987. Strong localization of photons in certain disordered dielectric
superlattices. Phys. Rev. Lett. 58: 2486–2489.doi:10.1103/PhysRevLett.58.2486
PMid:10034761
-
Anderson P W, 1958. Absence of diffusion in certain random lattices. Phys.
Rev. 109: 1492–1505. doi:10.1103/PhysRev.109.1492
-
Mott N F, 1967. Electrons in disordered structures. Adv. Phys. 16: 49–144.
doi:10.1080/00018736700101265
-
Skipetrov S E and Sokolov I M, Absence of Anderson localization of light
in a random ensemble of point scatterers. ArXiv:1303.4655v1 [physics.optics]
19 Mar 2013.
-
Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V, 1979.
Scaling theory of localization: Absence of quantum diffusion in two dimensions.
Phys. Rev. Lett. 42: 673–676.doi:10.1103/PhysRevLett.42.673
-
Khmel'nitskii D E, 1984. Localization and coherent scattering of electrons.
Physica B. 126: 239–241.
-
Maksimenko V V, Krikunov V A and Lushnikov A A, 1992. Strong localization
of light in a closely packed granular medium. JETP. 75: 848–856.
-
Yablonovitch E, 1987. Inhibited spontaneous emission in solid-state physics
and electronics. Phys. Rev. Lett. 58: 2059–2062. doi:10.1103/PhysRevLett.58.2059
PMid:10034639
-
Yablonovitch E, 2001. Photonic crystals: semiconductors of light. Sci.
American. 285: 47–55. doi:10.1038/scientificamerican1201-46
PMid:11759585
-
Stőrzer M, Gross P, Aegerter Ch. M and Maret G, 2006. Observation of the
critical regime near Anderson localization of light. Phys. Rev. Lett. 96:
063904–4. doi:10.1103/PhysRevLett.96.063904
PMid:16605998
-
Segev M, Silberberg Ya and Christodoulides D N, 2013. Anderson localization
of light. Nature Photonics. 7: 197–204. doi:10.1038/nphoton.2013.30
-
Chabanov A A, Stoytchev M and Genack A Z, 2000. Statistical signatures
of photon localization. Nature. 404: 850–853. doi:10.1038/35009055
PMid:10786786
-
Wőlfe P and Vollhardty D, Self-consistent theory of Anderson localization:
general formalism and applications, In '50 years of Anderson localization',
Ed. by E. Abrahams (Singapore: World Scientific Publishing Co. Pte. Ltd,
2010).
-
John S, Sompolinsky H and Stephen M. J, 1983. Localization in a disordered
elastic medium near two dimensions. Phys. Rev. B. 27: 5592–5603. doi:10.1103/PhysRevB.27.5592
-
John S and Stephen M J, 1983. Wave propagation and localization in a long-range
correlated random potential. Phys. Rev. B. 28: 6358–6368. doi:10.1103/PhysRevB.28.6358
-
Azbel M Ya and Soven P, 1983. Transmission resonances and the localization
length in one-dimensional disordered systems. Phys. Rev. B. 27: 831–835.
doi:10.1103/PhysRevB.27.831
-
Zyuzin A Yu, 1994. Weak localization in backscattering from an amplifying
medium. Europhys. Lett. 26 (7): 517–520. doi:10.1209/0295-5075/26/7/007
-
Wiersma D S, van Albada M P and Lagendijk Ad, 1995. Coherent backscattering
of light from amplifying random media. Phys. Rev. Lett. 75: 1739–1742.
doi:10.1103/PhysRevLett.75.1739
PMid:10060379
-
Van Albada M P and Lagendijk Ad, 1985. Observation of weak localization
of light in a random medium. Phys. Rev. Lett. 55: 2692–2695. doi:10.1103/PhysRevLett.55.2692
PMid:10032213
-
Wolf P-E and Maret G, 1985. Weak localization and coherent backscattering
of photons in disordered media. Phys. Rev. Lett. 55: 2696–2699. doi:10.1103/PhysRevLett.55.2696
PMid:10032214
-
Wiersma D S, Bartolini P, Lagendijk A and Righini R, 1997. Localization
of light in a disordered medium. Nature. 390: 671–673. doi:10.1038/37757
-
Anderson P W, 1985. The question of classical localization. A theory of
white paint? Phil. Mag. B. 52: 505–509. hdoi:10.1080/13642818508240619
-
Dicke R H, 1954. Coherence in spontaneous radiation processes. Phys. Rev.
93: 99–110. doi:10.1103/PhysRev.93.99
-
Bonifacio R and Lugiato L A, 1975. Cooperative radiation processes in two-level
systems: superfluorescence. Phys. Rev. A. 11: 1507–1521. doi:10.1103/PhysRevA.11.1507
-
Arecchi F T and Courtens E, 1970. Cooperative phenomena in resonant electromagnetic
propagation. Phys. Rev. A. 2: 1730–1737. doi:10.1103/PhysRevA.2.1730
-
MacGillivray J C and Feld M S, 1976. Theory of superradiance in an extended,
optically thick medium. Phys. Rev. A. 14: 1169–1189. doi:10.1103/PhysRevA.14.1169
-
Scully M O and Svidzinsky A A, 2009. The super of superradiance. Science.
325: 1510–1511. doi:10.1126/science.1176695
PMid:19762635
-
Maki J J, Malcuit M S, Raymer M G and Boydl R W, 1989. Influence of collisional
dephasing processes on superfluorescence. Phys. Rev. A. 40: 5135–5142.
doi:10.1103/PhysRevA.40.5135
PMid:9902776
-
Rehler N E and Eberly J H, 1971. Superradiance. Phys. Rev. A. 3: 1735–1751.
doi:10.1103/PhysRevA.3.1735
-
Bonifacio R and Lugiato L. A, 1975. Cooperative radiation processes in
two-level systems: superfluorescence. II. Phys. Rev. A. 12: 587–598.
doi:10.1103/PhysRevA.12.587
-
Bonifacio R, Schwendimann P and Haake F, 1971. Quantum statistical theory
of superradiance. I. Phys. Rev. A. 4: 302–313. doi:10.1103/PhysRevA.4.302
-
Malcuit M S, Maki J J, Simkin D J and Boyd R W, 1987. Transition from superfluorescence
to amplified spontaneous emission. Phys. Rev. Lett. 59: 1189–1192. doi:10.1103/PhysRevLett.59.1189
PMid:10035166
-
Frolov S V, Vardeny Z V and Yoshino K, 1998. Cooperative and stimulated
emission in poly(p-phenylene-vinylene) thin films and solutions. Phys.
Rev. B. 57: 9141–9147. doi:10.1103/PhysRevB.57.9141
-
Genack A Z and Drake J M, 1994. Scattering for superradiance. Nature. 368:
400–401. doi:10.1038/368400a0
-
Zhang Zh-Q, 1995. Light amplification and localization in randomly layered
media with gain. Phys. Rev. B. 52, 7960–7964. doi:10.1103/PhysRevB.52.7960
-
Wiersma D S and Lagendijk Ad, 1996. Light diffusion with gain and random
lasers. Phys. Rev. B. 54: 4256–4265. doi:10.1103/PhysRevE.54.4256
-
John S and Pang G, 1996. Theory of lasing in a multiple-scattering medium.
Phys. Rev. A. 54: 3642–3652. doi:10.1103/PhysRevA.54.3642
PMid:9913892
-
Thouless D J, 1977. Maximum metallic resistance in thin wires. Phys. Rev.
Lett. 18: 1167–1169. doi:10.1103/PhysRevLett.39.1167
-
Genack A Z, 1990. Universality of wave propagation in random media. Europhys.
Lett. 11: 733–738. doi:10.1209/0295-5075/11/8/007
-
Ahmed S A, Zang Zh-W, Yoo K M, Ali M A and Alfano R R, 1994. Effect of
multiple light scattering and self-absorption on the fluorescence and excitation
spectra of dyes in random media. Appl. Opt. 33: 2746–2750.doi:10.1364/AO.33.002746
PMid:20885633
-
Frolov S V, Vardeny Z V, Yoshino K, Zakhidov A and Baughman R H, 1999.
Stimulated emission in high-gain organic media. Phys. Rev. B. 59: R5284–R5287.
doi:10.1103/PhysRevB.59.R5284
-
Apalkov V M, Raikh M E and Shapiro B, 2002. Random resonators and prelocalized
modes in disordered dielectric films. Phys. Rev. Lett. 89: 016802–4.
doi:10.1103/PhysRevLett.89.016802
PMid:12097060
-
Mujumdar S, Ricci M, Torre R and Wiersma D S, 2004. Amplified extended
modes in random lasers. Phys. Rev. Lett. 93: 053903–4. doi:10.1103/PhysRevLett.93.053903
PMid:15323697
-
Pinheiro F A and Sampaio L C, 2006. Lasing threshold of diffusive random
lasers in three dimensions. Phys. Rev. A. 73: 013826–4. doi:10.1103/PhysRevA.73.013826
-
Cao H, 2003. Lasing in random media. Waves in Random Media. 13: R1–R39.
doi:10.1088/0959-7174/13/3/201
-
Tessler N, Denton G J and Friend R H, 1996. Lasing from conjugated-polymer
microcavities. Nature. 382: 695–697. doi:10.1038/382695a0
-
Hide F, Diaz-Garcia M A, Schwartz B J, Andersson M R, Pei Q and Heeger
A J, 1996. Semi-conducting polymers: A new class of solid-state laser materials.
Science. 273: 1833–1836. doi:10.1126/science.273.5283.1833
-
Brouwer H J, Krasnikov V I, Hilberer A and Hadziioannou G, 1996. Blue superradiance
from neat semiconducting alternating copolymer films. Adv. Mater. 8: 935–937.
doi:10.1002/adma.19960081116
-
Gelinck G H, Warman J M, Remmers M and Neher D, 1997. Narrow-band emissions
from conjugated-polymer films. Chem. Phys. Lett. 265: 320–326. doi:10.1016/S0009-2614(96)01447-9
-
Frolov S V, Gellermann W, Ozaki M, Yoshino K and Vardeny Z V, 1997. Cooperative
emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78: 729–732.
doi:10.1103/PhysRevLett.78.729
-
Long X, Malinowski A, Bradley D D C, Inbasekaran M and Woo E P, 1997. Emission
processes in conjugated polymer solutions and thin films. Chem. Phys. Lett.
265: 320–326. doi:10.1016/S0009-2614(96)01447-9
-
Gouedard C, Husson D, Sauteret C, 1993. Generation of spatially incoherent
short pulses in laser-pumped neodymium stoichiometric crystals and powders.
J. Opt. Soc. Am. B. 10: 2358-2363. doi:10.1364/JOSAB.10.002358
-
Williams G R, Bayram S B, Rand S C, Hinklin T and Laine R M, 2002. Laser
action in strongly scattering rare-earth-metal-doped dielectric nanophosphors.
Phys. Rev. A. 65: 013807–6. doi:10.1103/PhysRevA.65.013807
-
Zhang D, Cheng B, Yang J, Zhang Y, Hu W and Li Zh, 1995. Narrow-bandwidth
emission from a suspension of dye and scatterers. Opt. Commun. 118: 462–465.
doi:10.1016/0030-4018(95)00259-B
-
Sha W L, Liu C-H and Alfano R R, 1994. Spectral and temporal measurements
of laser action of Rhodamine 640 dye in strongly scattering media. Opt.
Lett. 19: 1922–1924. doi:10.1364/OL.19.001922
PMid:19855696
-
Balachandran R M and Lawandy N M, 1995. Interface reflection effects in
photonic paint. Opt. Lett. 20: 1271–1273. doi:10.1364/OL.20.001271
PMid:19859496
-
Zhang D, Cheng B, Yang Ju, Zhang Yu, Hu W and Li Zh, 1995. Narrow-bandwidth
emission from a suspension of dye and scatterers. Opt. Commun. 118: 462–465.
doi:10.1016/0030-4018(95)00259-B
-
Wiersma D S, van Albada M P and Lagendijk Ad, 1995. Random laser? Nature.
373: 203–204. doi:10.1038/373203b0
-
Lavandy N M and Balachandran R M, 1995. Random laser? Reply. Nature. 373:
204. doi:10.1038/373204a0
-
Lavandy N M, Balachandran R M, Gomes A S L and Sauvain E, 1994. Laser action
in strongly scattering media. Nature. 368: 436–438. doi:10.1038/368436a0
-
Ter-Garielyan N E, Markushev V M, Belan V R, Briskina Ch M, Dimitrova O
V, Zolin V F and Lavrov A V, 1991. Stimulated radiation emitted by lithium
neodymium tetraphosphate LiNd (PO3)4 and neodymium pentaphosphate NdP5O14
powders. Sov. J. Quant. Electron. 21: 840–842. doi:10.1070/QE1991v021n08ABEH003967
-
Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y and Chang R P H, 1998.
Ultraviolet lasing in resonators formed by scattering in semiconductor
polycrystalline films. Appl. Phys. Lett. 73: 3656–3658. doi:10.1063/1.122853
-
Cao H, Zhao Y G, Ho S T, Seelig E W, Wang Q H and Chang R P H, 1999. Random
laser action in semiconductor powder. Phys. Rev. Lett. 82: 2278–2281.
doi:10.1103/PhysRevLett.82.2278
-
Cao H, Xu J Y, Chang S-H and Ho S T, 2000. Transition from amplified spontaneous
emis-sion to laser action in strongly scattering media. Phys. Rev. E. 61:
1985–1989. doi:10.1103/PhysRevE.61.1985
PMid:11046486
-
Cao H, Xu J Y, Zhang D Z, Chang S-H, Ho S T, Seelig E W, Liu X and Chang
R P H, 2000. Spatial confinement of laser light in active random media.
Phys. Rev. Lett. 84: 5584–5587. doi:10.1103/PhysRevLett.84.5584
PMid:10991000
-
Cao H, Ling Y, Xu J Y, Cao C Q and Kumar P, 2001. Photon statistics of
random lasers with resonant feedback. Phys. Rev. Lett. 86: 4524–4527.
doi:10.1103/PhysRevLett.86.4524
PMid:11384274
-
Wiersig J, Unterhinninghofen J, Song Q, Cao H, Hentschel M and Shinohara
S, Chapter 4. Review on unidirectional light emission from ultralow-loss
modes in deformed microdisks. In: Trends in nano- and micro-cavities. Ed.
by O'Dae Kwon and Byoungho Lee (Kyungwon An. Bentham Science Publishers
Ltd., 2011) 109–152.
-
Yamilov A and Cao H, Chap. 44. Self-optimization of optical confinement
and lasing action in disordered photonic crystals. In: Optical properties
of photonic structures: interplay of order and disorder. Ed. by M F Limonov
and R De La Rue (Abingdon: Taylor and Francis Group, 2012) 395–414.
-
Cao H and Noh H, Chap. 9. Lasing in amorphous nanophotonic structures.
In: Amorphous nanophotonics. Ed. by C Rockstuhl and T Scharf (Berlin Heidelberg:
Springer, 2013) 227–265. doi:10.1007/978-3-642-32475-8_9
-
Cao H, 2005. Review on latest developments in random lasers with coherent
feedback. J. Phys. A: Math. Gen. 38: 10497–10535. doi:10.1088/0305-4470/38/49/004
-
Sebbah P and Vanneste C, 2002. Random laser in the localized regime. Phys.
Rev. B. 66: 144202–10. doi:10.1103/PhysRevB.66.144202
-
Smuk A, Lazaro E, Olson L P and Lawandy N M, 2011. Random laser action
in bovine se-men. Opt. Commun. 284: 1257–1258. doi:10.1016/j.optcom.2010.11.004
-
Van der Molen K L, Tjerkstra R W, Mosk A P and Lagendijk Ad, 2007. Spatial
extent of random laser modes. Phys. Rev. Lett. 98: 143901–4. doi:10.1103/PhysRevLett.98.143901
PMid:17501274
-
Tűreci H E, Stone A D and Collier B, 2006. Self-consistent multimode lasing
theory for complex or random lasing media. Phys. Rev. A. 74: 043822–17.
doi:10.1103/PhysRevA.74.043822
-
Tűreci H E, Stone A D and Ge L, 2007. Theory of the spatial structure
of nonlinear lasing modes. Phys. Rev. A. 76: 013813–4. doi:10.1103/PhysRevA.76.013813
-
Tűreci H E, Ge L, Rotter S and Stone A D, 2008. Strong interactions in
multimode random lasers. Science. 320: 643–646. doi:10.1126/science.1155311
PMid:18451297
-
Haken H and Sauermann H, 1963. Nonlinear interaction of laser modes. Z.
Phys. 173: 261–275. doi:10.1007/BF01377828
-
Leonetti M, Conti C and Lopez C, 2001. The mode-locking transition of random
lasers. Nature Photonics. 2: 615–617.
-
Bergman D J and Stockman M I, 2003. Surface plasmon amplification by stimulated
emission of radiation: Quantum generation of coherent surface plasmons
in nanosystems. Phys. Rev. Lett. 90: 027402–4. doi:10.1103/PhysRevLett.90.027402
PMid:12570577
-
Stockman M I, 2011. Nanoplasmonics: past, present, and glimpse into future.
Opt. Express. 19: 22029–22106. doi:10.1364/OE.19.022029
PMid:22109053
-
Stockman M I, 2010. The spaser as a nanoscale quantum generator and ultrafast
amplifier. J. Opt. 12: 024004–13. doi:10.1088/2040-8978/12/2/024004
-
Noginov M A, Zhu G., Belgrave A M, Bakker R, Shalaev V M, Narimanov E E,
Stout S, Herz E, Suteewong T and Wiesner U, 2009. Demonstration of a spaser-based
nanolaser. Nature. 460: 1110–1113. doi:10.1038/nature08318
PMid:19684572
-
Stockman M I, 2008. Spasers explained. Nature Photonics. 2: 327–329.
doi:10.1038/nphoton.2008.85
-
Zheludev N, Prosvirnin S, Papasimakis N and Fedotov V, 2008. Lasing spaser.
Nature Photonics. 2: 351–354. doi:10.1038/nphoton.2008.82
-
Redding B, Choma M A and Cao H, 2012. Speckle-free laser imaging using
random laser illumination. Nature Photonics. 6: 355–359. doi:10.1038/nphoton.2012.90
-
Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige
T, Shiki M, Yoshimori S, Yoshimura K and Davis P, 2008. Fast physical random
bit generation with chaotic semiconductor lasers. Nature Photonics. 2:
728–732. doi:10.1038/nphoton.2008.227
-
http://phys.org/news148660964.html
-
http://www.sciencedaily.com/releases/2008/05/080523074709.htm
-
Cao H, 2005. Random lasers: Development, features and applications. Optics
and Photonics News. 16: 24–29. doi:10.1364/OPN.16.1.000024
-
Polson R C and Vardeny Z V, 2004. Random lasing in human tissues. Appl.
Phys. Lett. 85: 1289–1291. doi:10.1063/1.1782259
-
Jeong K-Y, Lee Y-H, Cao H and Yang J-K, 2012. Lasing in localized mode
at optimized photonic amorphous structure. Appl. Phys. Lett. 101: 091101–4.
doi:10.1063/1.4748109
-
Simonis P and Berthier S, 2012. How nature produces blue color. In: Photonic
Crystals – In-troduction. Ed. by A. Massaro, Applications and Theory.
(Rijeka: InTech). 3–24.
-
Saranathan V, Forster J D, Noh H, Liew S-F, Mochrie S G J, Cao H, Dufresne
E R and Prum R O, 2012. Structure and optical function of amorphous photonic
nanostructures from avian feather barbs: a comparative small angle X-ray
scattering (SAXS) analysis of 230 bird species. J. R. Soc. Interface. 9:
2563–2580. doi:10.1098/rsif.2012.0191
PMid:22572026
-
Yang J-K, Boriskina S V, Noh H, Rooks M J, Solomon G S, Negro L D and Cao
H, 2010. Demonstration of laser action in a pseudorandom medium. Appl.
Phys. Lett. 97: 223101–3. doi:10.1063/1.3519844
-
Mahler L, Tredicucci A, Beltram F, Walther Ch, Faist J, Beere H E, Ritchie
D A and Wiersma D S, 2010. Quasi-periodic distributed feedback laser. Nature
Photonics. 4: 365–369. doi:10.1038/nphoton.2009.285
-
Segev M, Silberberg Ya and Christodoulides D N, 2013. Anderson localization
of light. Nature Photonics. 7: 197–204. doi:10.1038/nphoton.2013.30
(c) Ukrainian Journal
of Physical Optics |