Home
page
Other articles
in this issue |
Electromagnetically
induced transparency and Autler–Townes effect in a generalized Λ-system:
A five-level model
Żaba A., Cao Long V., Głódź M., Paul-Kwiek
E., Kowalski K., Szonert J., Woźniak D. and Gateva S.
Download this
article
Abstract. We calculate electric susceptibility of a laser-dressed
atomic medium. The model adopted in this work refers to the experiment
with cold 85Rb atoms, where the states F′ = 1, 2, 3 of the hyperfine
manifold 5P3/2 (F′) are strongly coupled with the ground state
5S1/2 (F = 2), and the coupling is probed by a weak probing
field from the other ground-state component 5S1/2 (F = 3). We
present a five-level model in which the states F = 2, 3 and F′ = 1, 2,
3 are taken into account, while the non-coupled state F′ = 4 is neglected.
The model is used as a starting point to reproduce spectral features observed
in the absorption of probe light passing through a cold sample of 85Rb
atoms in a magneto-optical trap. Basing on numerical solutions of this
model, we have also studied in detail the impact on the probe spectra from
the presence of the state F′ = 1 to which probing is forbidden by electric-dipole
transition, but coupling is allowed [see, e.g., Proc. of SPIE 8770 (2013)
87700Q].
Keywords: electromagnetically induced transparency,
Autler–Townes effect,
-system, cold
85Rb atoms in magneto-optical trap, five-level model, master equation for
the density operator
PACS: 42.50.Gy, 42.50.Hz, 31.15.xg
UDC: 535.332, 535.34
Ukr. J. Phys. Opt.
14 135-145
doi: 10.3116/16091833/14/3/135/2013
Received: 09.04.2013
Анотація. У цій роботі розраховано
діелектричну сприйнятність лазерно сформованого
атомарного середовища. Застосована модель
відповідає експериментові з холодними
атомами 85Rb, де стани F' = 1, 2, 3 надтонкої множини
5P3/2 (F') сильно зв’язані з основним
станом 5S1/2 (F = 2), а зв'язок тестується
компонентою слабкого зондувального поля
іншого основного стану 5S1/2 (F = 3). Нами
представлено п’ятирівневу модель, яка
враховує стани F = 2, 3 і F' =1, 2, 3 і нехтує незв’язаним
станом F' = 4. Цю модель використано як базову
для відтворення спектральних характеристик,
що виявляються в поглинанні зондувального
світлового випромінювання, яке поширюється
крізь холодні атоми 85Rb у магнітооптичній
пастці. На основі чисельного розв’язку
в рамках цієї моделі ми також докладно
вивчили вплив на спектр зондування присутності
стану F' = 1, для якого допускається зв'язок,
однак електродипольні переходи заборонено
[див., наприклад, Proc. SPIE 8770 (2013) 87700Q]. |
|
REFERENCES
-
Imamoglu A and Harris S E, 1989. Lasers without inversion: interference
of dressed lifetime-broadened states. Opt. Lett. 14: 1344−1346. doi:10.1364/OL.14.001344
PMid:19759677
-
Fleischhauer M, Imamoglu A and Marangos J P, 2005. Electromagnetically
induced transparency: optics in coherent media. Rev. Mod. Phys. 77: 633−673.
doi:10.1103/revmodphys.77.633
-
Harris S E, 1997. Electromagnetically induced transparency. Phys. Today.
50: 36−42. doi:10.1063/1.881806
-
Harris S E and Hau L V, 1999. Nonlinear optics at low light levels. Phys.
Rev. Lett. 82: 4611−4614. doi:10.1103/PhysRevLett.82.4611
-
Kowalski K, Cao Long V, Nguyen Viet H, Gateva S, Głódź M and Szonert
J, 2009. Simultane-ous coupling of three hfs components in cascade scheme
of EIT in cold 85Rb atoms. J. Non-Cryst. Solids. 355: 1295−1301. doi:10.1016/j.jnoncrysol.2009.05.033
-
Kowalski K, Cao Long V, Dinh Xuan K, Głódź M, Nguyen Huy B and Szonert
J, 2010. Electromagnetically induced transparency. Comput. Meth. Sci. Technol.
Special issue: 131−145.
-
Abi-Salloum T Y, 2010. Electromagnetically induced transparency and Autler-Townes
splitting: Two similar but distinct phenomena in two categories of three-level
atomic systems. Phys. Rev. A. 81: 053836. doi:10.1103/PhysRevA.81.053836
-
Li Y Q and Xiao M, 1995. Electromagnetically induced transparency in a
three-level Λ−type system in rubidium atoms. Phys. Rev. A. 51: R2703−R2706.
doi:10.1103/PhysRevA.51.R2703
PMid:9912000
-
Li Y Q and Xiao M, 1995. Observation of quantum interference between dressed
states in an electromagnetically induced transparency. Phys. Rev. A. 51:
4959−4962. doi:10.1103/PhysRevA.51.4959
PMid:9912188
-
Anisimov P M, Dowling J P and Sanders B C, 2011. Objectively discerning
Autler-Townes splitting from electromagnetically induced transparency.
Phys. Rev. Lett. 107: 163604. doi:10.1103/PhysRevLett.107.163604PMid:22107383
-
Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman
M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E and Laurat
J, 2013. Experimental investigation of the transition between Autler-Townes
splitting and electromagnetically-induced-transparency models. Phys. Rev.
A. 87: 013823. doi:10.1103/PhysRevA.87.013823
-
Wang J, Kong L B, Tu X H, Jiang K J, Li K, Xiong H W, Zhu Y and Zhan M
S, 2004. Elec-tromagnetically induced transparency in multi-level cascade
scheme of cold rubidium atoms. Phys. Lett. A. 328: 437−443. doi:10.1016/j.physleta.2004.06.049
-
Scully M O and Zubairy M S, Quantum optics. Cambridge: Cambridge University
Press (1997). doi:10.1017/CBO9780511813993
-
Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M, 1995. Electromagnetically
induced transpar-ency in ladder-type inhomogeneously broadened media: Theory
and experiment. Phys. Rev. A. 51: 576−584. doi:10.1103/PhysRevA.51.576
PMid:9911617
-
Petch J C, Keitel C H, Knight P L and Marangos J P, 1996. Role of electromagnetically
in-duced transparency in resonant four-wave-mixing schemes. Phys. Rev.
A. 53: 543−561. doi:10.1103/PhysRevA.53.543
PMid:9912912
-
Kowalski K, Dimova-Arnaudova E, Fronc K, Gateva S, Głódź M, Lis L, Petrov
L and Szonert J, 2006. A system for magnetooptical cooling and trapping
of Rb atoms. Opt. Appl. 36: 559−567.
-
Kowalski K, Cao Long V, Dinh Xuan K, Głódź M, Nguyen Huy B and Szonert
J, 2010. Magnetooptical trap: fundamentals and realization. Comput. Meth.
Sci. Technol. Special issue: 115−129.
-
Kowalski K, Vaseva K, Gateva S, Głódź M, Petrov L and Szonert J, 2007.
System for EIT spectroscopy of cold Rb atoms. Proc. SPIE. 6604: 66040K.
doi:10.1117/12.726894
-
Chen Y-Ch, Lin Chi-W and Yu I A, 2000. Role of degenerate Zeeman levels
in electromag-netically induced transparency. Phys. Rev. A. 61: 053805.
doi:10.1103/PhysRevA.61.053805
-
Park S J, Kwon T Y and Lee H S, 2004. Effects of coherent uncoupled excited
states on electromagnetically induced transparency. Japan. J. Appl. Phys.
43: 7273−7276. doi:10.1143/JJAP.43.7273
-
Żaba A, Paul-Kwiek E, Kowalski K, Szonert J, Woźniak D, Gateva S, Cao
Long V and Głódź M, 2013. The role of a dipole-coupled but not dipole-probed
state in probe absorption with multilevel coupling (accepted for publication
in Eur. Phys. J., Special Topic).
-
Żaba A, Paul-Kwiek E, Kowalski K, Szonert J, Woźniak D, Gateva S, Cao
Long V and Głódź M, 2013. Pump-probe spectra modeled with inclusion
of a dipole-coupled but not dipole-probed F′ state, for the case of 85Rb
5S1/2(F)↔5P3/2(F′) transitions. Proc. SPIE. 8770: 87700Q. doi:10.1117/12.2015078
-
Sheremet A S, Gerasimov L V, Sokolov I M, Kupriyanov D V, Mishina O S,
Giacobino E and Laurat J, 2010. Quantum memory for light via a stimulated
off-resonant Raman process: beyond the three-level Λ-scheme approximation.
Phys. Rev. A. 82: 033838. doi:10.1103/PhysRevA.82.033838
(c) Ukrainian Journal
of Physical Optics |