Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Electromagnetically induced transparency and Autler–Townes effect in a generalized Λ-system: A five-level model

Żaba A., Cao Long V., Głódź M., Paul-Kwiek E., Kowalski K., Szonert J.,  Woźniak D. and Gateva S. 

Download this article

Abstract. We calculate electric susceptibility of a laser-dressed atomic medium. The model adopted in this work refers to the experiment with cold 85Rb atoms, where the states F′ = 1, 2, 3 of the hyperfine manifold 5P3/2 (F′) are strongly coupled with the ground state 5S1/2 (F = 2), and the coupling is probed by a weak probing field from the other ground-state component 5S1/2 (F = 3). We present a five-level model in which the states F = 2, 3 and F′ = 1, 2, 3 are taken into account, while the non-coupled state F′ = 4 is neglected. The model is used as a starting point to reproduce spectral features observed in the absorption of probe light passing through a cold sample of 85Rb atoms in a magneto-optical trap. Basing on numerical solutions of this model, we have also studied in detail the impact on the probe spectra from the presence of the state F′ = 1 to which probing is forbidden by electric-dipole transition, but coupling is allowed [see, e.g., Proc. of SPIE 8770 (2013) 87700Q].

Keywords: electromagnetically induced transparency, Autler–Townes effect, 
-system, cold 85Rb atoms in magneto-optical trap, five-level model, master equation for the density operator
 

PACS: 42.50.Gy, 42.50.Hz, 31.15.xg
UDC: 535.332, 535.34
Ukr. J. Phys. Opt. 14 135-145
doi: 10.3116/16091833/14/3/135/2013
Received: 09.04.2013

Анотація. У цій роботі розраховано діелектричну сприйнятність лазерно сформованого атомарного середовища. Застосована модель відповідає експериментові з холодними атомами 85Rb, де стани F' = 1, 2, 3 надтонкої множини 5P3/2 (F') сильно зв’язані з основним станом 5S1/2 (F = 2), а зв'язок тестується компонентою слабкого зондувального поля іншого основного стану 5S1/2 (F = 3). Нами представлено п’ятирівневу модель, яка враховує стани F = 2, 3 і F' =1, 2, 3 і нехтує незв’язаним станом F' = 4. Цю модель використано як базову для відтворення спектральних характеристик, що виявляються в поглинанні зондувального світлового випромінювання, яке поширюється крізь холодні атоми 85Rb у магнітооптичній пастці. На основі чисельного розв’язку в рамках цієї моделі ми також докладно вивчили вплив на спектр зондування присутності стану F' = 1, для якого допускається зв'язок, однак електродипольні переходи заборонено [див., наприклад, Proc. SPIE 8770 (2013) 87700Q].

REFERENCES
  1. Imamoglu A and Harris S E, 1989. Lasers without inversion: interference of dressed lifetime-broadened states. Opt. Lett. 14: 1344−1346. doi:10.1364/OL.14.001344 PMid:19759677
  2. Fleischhauer M, Imamoglu A and Marangos J P, 2005. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77: 633−673. doi:10.1103/revmodphys.77.633
  3. Harris S E, 1997. Electromagnetically induced transparency. Phys. Today. 50: 36−42. doi:10.1063/1.881806
  4. Harris S E and Hau L V, 1999. Nonlinear optics at low light levels. Phys. Rev. Lett. 82: 4611−4614. doi:10.1103/PhysRevLett.82.4611
  5. Kowalski K, Cao Long V, Nguyen Viet H, Gateva S, Głódź M and Szonert J, 2009. Simultane-ous coupling of three hfs components in cascade scheme of EIT in cold 85Rb atoms. J. Non-Cryst. Solids. 355: 1295−1301. doi:10.1016/j.jnoncrysol.2009.05.033
  6. Kowalski K, Cao Long V, Dinh Xuan K, Głódź M, Nguyen Huy B and Szonert J, 2010. Electromagnetically induced transparency. Comput. Meth. Sci. Technol. Special issue: 131−145.
  7. Abi-Salloum T Y, 2010. Electromagnetically induced transparency and Autler-Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A. 81: 053836. doi:10.1103/PhysRevA.81.053836
  8. Li Y Q and Xiao M, 1995. Electromagnetically induced transparency in a three-level Λ−type system in rubidium atoms. Phys. Rev. A. 51: R2703−R2706. doi:10.1103/PhysRevA.51.R2703 PMid:9912000 
  9. Li Y Q and Xiao M, 1995. Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A. 51: 4959−4962. doi:10.1103/PhysRevA.51.4959 PMid:9912188 
  10. Anisimov P M, Dowling J P and Sanders B C, 2011. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107: 163604. doi:10.1103/PhysRevLett.107.163604PMid:22107383 
  11. Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E and Laurat J, 2013. Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models. Phys. Rev. A. 87: 013823. doi:10.1103/PhysRevA.87.013823
  12. Wang J, Kong L B, Tu X H, Jiang K J, Li K, Xiong H W, Zhu Y and Zhan M S, 2004. Elec-tromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms. Phys. Lett. A. 328: 437−443. doi:10.1016/j.physleta.2004.06.049
  13. Scully M O and Zubairy M S, Quantum optics. Cambridge: Cambridge University Press (1997). doi:10.1017/CBO9780511813993
  14. Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M, 1995. Electromagnetically induced transpar-ency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A. 51: 576−584. doi:10.1103/PhysRevA.51.576 PMid:9911617 
  15. Petch J C, Keitel C H, Knight P L and Marangos J P, 1996. Role of electromagnetically in-duced transparency in resonant four-wave-mixing schemes. Phys. Rev. A. 53: 543−561. doi:10.1103/PhysRevA.53.543 PMid:9912912 
  16. Kowalski K, Dimova-Arnaudova E, Fronc K, Gateva S, Głódź M, Lis L, Petrov L and Szonert J, 2006. A system for magnetooptical cooling and trapping of Rb atoms. Opt. Appl. 36: 559−567.
  17. Kowalski K, Cao Long V, Dinh Xuan K, Głódź M, Nguyen Huy B and Szonert J, 2010. Magnetooptical trap: fundamentals and realization. Comput. Meth. Sci. Technol. Special issue: 115−129.
  18. Kowalski K, Vaseva K, Gateva S, Głódź M, Petrov L and Szonert J, 2007. System for EIT spectroscopy of cold Rb atoms. Proc. SPIE. 6604: 66040K. doi:10.1117/12.726894
  19. Chen Y-Ch, Lin Chi-W and Yu I A, 2000. Role of degenerate Zeeman levels in electromag-netically induced transparency. Phys. Rev. A. 61: 053805. doi:10.1103/PhysRevA.61.053805
  20. Park S J, Kwon T Y and Lee H S, 2004. Effects of coherent uncoupled excited states on electromagnetically induced transparency. Japan. J. Appl. Phys. 43: 7273−7276. doi:10.1143/JJAP.43.7273
  21. Żaba A, Paul-Kwiek E, Kowalski K, Szonert J, Woźniak D, Gateva S, Cao Long V and Głódź M, 2013. The role of a dipole-coupled but not dipole-probed state in probe absorption with multilevel coupling (accepted for publication in Eur. Phys. J., Special Topic).
  22. Żaba A, Paul-Kwiek E, Kowalski K, Szonert J, Woźniak D, Gateva S, Cao Long V and Głódź M, 2013. Pump-probe spectra modeled with inclusion of a dipole-coupled but not dipole-probed F′ state, for the case of 85Rb 5S1/2(F)↔5P3/2(F′) transitions. Proc. SPIE. 8770: 87700Q. doi:10.1117/12.2015078
  23. Sheremet A S, Gerasimov L V, Sokolov I M, Kupriyanov D V, Mishina O S, Giacobino E and Laurat J, 2010. Quantum memory for light via a stimulated off-resonant Raman process: beyond the three-level Λ-scheme approximation. Phys. Rev. A. 82: 033838. doi:10.1103/PhysRevA.82.033838
(c) Ukrainian Journal of Physical Optics