Home
page
Other articles
in this issue |
Manifestation of
metastable γ-TeO2 phase in the Raman spectrum of crystals grown in synthetic
opal pores
Abu Sal B., Moiseyenko V., Dergachov M., Yevchik
A. and Dovbeshko G.
Download this
article
Abstract. ‘Opal–tellurium dioxide’ nanocomposite has been
obtained by filling opal pores with a melt of fine dispersive polycrystalline
α-TeO2 powder. The Raman spectrum of the composite has been measured in
the region of 50–1100 cm–1 and compared with the spectra peculiar for
polycrystalline α-TeO2 powder and the corresponding single crystals. Besides
of the Raman bands corresponding to α-TeO2 lattice vibrations, other bands
have been detected in the spectrum of the composite. Their spectral positions
coincide fairly well with those available in the spectrum of γ-TeO2.
Keywords: synthetic opal photonic crystals,
Raman scattering, polymorphs of tellurium dioxide
PACS: 78.67.Bf + 78.30.Hv
UDC: 535.36
Ukr. J. Phys. Opt.
14 119-124
doi: 10.3116/16091833/14/3/119/2013
Received: 15.05.2013
Анотація. Нанокомпозит “диоксид
телуру–опал” одержано заповненням пор
опалу розплавом тонкодисперсного полікристалічного
порошку α-TeO2. Спектри комбінаційного розсіяння
композиту досліджено в області 50–1100 cм–1
і порівняно зі спектрами полікристалічного
порошку та монокристалів α-TeO2. Окрім раманівських
смуг, що відповідають ґратковим коливанням
α-TeO2, виявлено нові смуги в спектрі композиту.
Спектральне положення цих смуг збігається
зі смугами для γ-TeO2. |
|
REFERENCES
-
Stroscio M and Dutta M. Phonons in nanostructures. New York: Cambridge
University Press (2001). doi:10.1017/CBO9780511534898
-
Joannopoulos J, Johnson G, Winn J and Meade R. Photonic crystals. Molding
the flow of light. Princeton and Oxford: Princeton University Press, 2nd
Ed. (2008).
-
Aliev A, Akhmedzhanova N, Krivorotov V, Kholmanov I and Fridman A, 2003.
Thermal conductivity of opal filled with a LiIO3 ionic conductor. Phys.
Solid State. 45: 61–68. doi:10.1134/1.1537411
-
Gorelik V, 2009. Optical and dielectric properties of nanostructured photonic
crystals loaded by ferroelectrics and metals. Phys. Solid State. 51: 1321–1327.
doi:10.1134/S1063783409070014
-
Ayroult B, 1972. Lattice dynamics of paratellurite TeO2. Sol. State Commun.
11: 639–643. doi:10.1016/0038-1098(72)90478-4
-
Takizawa T, 1980. Optical absoption and reflection spectra of paratellurite,
TeO2. J. Phys. Soc. Japan. 48: 505–510. doi:10.1143/JPSJ.48.505
-
Vogel E, Weber M and Krol D, 1991. Nonlinear optical phenomena in glass.
Phys. Chem. Glasses. 32: 231–254.
-
Worlton T and Beyerlain P, 1975. Structure and order parameters in the
pressure-induced continuous transition in TeO2. Phys. Rev. B. 12: 1899–1907.
doi:10.1103/PhysRevB.12.1899
-
Thomas P, 1988. The crystal structure and absolute optical chirality of
paratellurite, α-TeO2. J. Phys. C.: Solid State Phys. 21: 4611–4628.
doi:10.1088/0022-3719/21/25/009
-
Beyer H, 1967. Verfeinerung der Kristallstruktur von Tellurit, dem rhombischen
TeO2. Z. Kristalogr. 124: 228–237. doi:10.1524/zkri.1967.124.3.228
-
Champarnaud-Mesjard J, Blanchandin S, Thomas P, Mirgorodsky A, Merle-Mejean
T and Frit B, 2000. Crystal structure, Raman spectrum and lattice dynamics
of a new metastable form of tellurium dioxide: γ-TeO2. J. Phys. Chem.
Solids. 61:1499–1507. doi:10.1016/S0022-3697(00)00012-3
-
Stöber W, Fink A and Bohn E, 1968. Controlled growth of monodisperse silica
spheres in micron size range. J. Colloidal Interface Sci. 26: 62–68.
doi:10.1016/0021-9797(68)90272-5
-
Denisov E, Karpov S, Kolobkova E, Novikov B, Suslikov A, Fedorov D and
Yastrebova M, 1999. Peculiarities of low-frequency vibrations of nanocrystals
in fluorine - phosphate glass-like matrixes. Phys. Solid State. 41: 1306–1309.
doi:10.1134/1.1130964
(c) Ukrainian Journal
of Physical Optics |