Home
page
Other articles
in this issue |
Photoacoustic response
of a common starfish tissue
Guskos N., Majszczyk J., Typek J. , Rybicki
J. and Padlyak B.
Download this
article
Abstract. A sample of common starfish (Asterias Rubens) tissue
has been prepared in the shape of a film to study its photoacoustic (PA)
response. A broad absorption band in the PA spectrum is detected in the
visible region (a peak at about 570 nm), while the ultraviolet region is
distinguished by the absorption bands originating from π → π* and π
→ n charge transfer transitions. The visible PA spectrum strongly depends
on decomposition of sample in the open air. The PA spectrum measured by
us is very similar to those obtained earlier for the other living organisms,
e.g. Trunculariopis Trunculus and Sea Urchin. The absorption band near
570 nm is similar to that found for spermidine, which is of importance
in the information transfer to DNA. The results obtained in this work confirm
experimentally that geologically very old organisms have been absorbing
especially intensely in that part of solar spectrum for which the water
is transparent.
Keywords: photoacoustic spectroscopy, common
starfish, electronic transitions
PACS: 78.20.Pa; 87.50.cf
UDC: 535.2, 577
Ukr. J. Phys. Opt.
14 44-49
doi: 10.3116/16091833/14/1/44/2013
Received: 18.11.2012
Анотація. Зразки тканин морської
зірки (Asterias Rubens) підготовлено у вигляді
плівок для досліджень їхнього фотоакустичного
відгуку. Виявлено широку смугу поглинання
у видимій області (пік поблизу 570 нм),
а також в ультрафіолетовій області
спектру, що відповідає переходам π → π*
і π → n з переносом заряду. Фотоакустичний
спектр у видимій області сильно залежить
від розкладу зразка на повітрі. Досліджений
фотоакустичний спектр подібний до раніше
одержаних спектрів інших живих організмів
– Trunculariopis Trunculus і морського їжака. Смуга
поглинання в околі 570 нм схожа до смуги
спермідину, який має важливе значення в
передаванні інформації ДНК. Одержані результати
важливі та експериментально підтверджують,
що геологічно старі організми особливо
інтенсивно поглинають сонячне випромінювання
в тій частині спектру, в яких вода прозора. |
|
REFERENCES
-
Wang X, Xu Y, Xu M, Yokoo S, Fry E S and Wang L V, 2002. Photoacoustic
tomography of biological tissues with high cross-section resolution: Reconstruction
and experiment. Med. Phys. 29: 2799-2806. doi:10.1118/1.1521720
PMid:12512713
-
Su Y, Zhang F, Xu K, Yao J and Wang R K, 2005. A photoacoustic tomography
system for imaging of biological tissues. J. Phys. D: Appl. Phys. 38: 2640-2646.
doi:10.1088/0022-3727/38/15/016
-
Guskos N, Aidinis K, Papadopoulos G J, Majszczyk J, Typek J, Rybicki J,
Maryniak M, 2008. Photo-acoustic response of active biological systems.
Opt. Mater. 30: 814-816. doi:10.1016/j.optmat.2007.02.004
-
Guskos N, Majszczyk J, Typek J, Rybicki J, Guskos A, Kruk I, Aidinis C,
and Zolnierkiewicz G, Photoacoustic, 2010. Response of Sea Urchin Tissue.
Rev. Adv. Mater. Sci. 23: 76-79.
-
Łomozik L and Gasowska A, 1996. Investigations of binding sites and stability
of complexes formed in ternary Cu(II)/adenosine or cytidine / putrescine
systems. J. Inorg. Biochem. 62: 103-115. doi:10.1016/0162-0134(95)00120-4
-
Lomozik L, Gasowska A and Bolewska L, 1996. Copper(II) ions as a factor
interferingin the interaction between bioligands in systems with adenosine
and polyamines. J. Inorg. Biochem. 63: 191-206. doi:10.1016/0162-0134(95)00215-4
-
Lomozik L and Gasowska A, 1998. Complexes of copper(II) with spermine and
non-covalent interactions in the systems including nucleosides or nucleotides.
J. Inorg. Biochem. 72: 37-47. doi:10.1016/S0162-0134(98)10060-0
-
Guskos N, Papadopoulos G P, Likodimos V, Mair G L R, Majszczyk J, Typek
J, Wabia M, Grech E, Dziembowska T, and Perkowska T A, 2000. Photoacoustic
detection of d-d transitions and electronic structure of three polyamine
copper complexes, J. Phys. D: Appl. Phys. 33: 2664-2668. doi:10.1088/0022-3727/33/20/320
-
Guskos N, Papadopoulos G J, LikodimosLikodimos V, Majszczyk J, Typek J,
Wabia M, Grech E, Dziembowska T, Perkowska T A and Aidinis C, 2001. Electronic
structure of polycrystalline polyamine copper dinitrate complexes investigated
by photoacoustic and EPR spectroscopy. J. Appl. Phys. 90: 1436-1441. doi:10.1063/1.1372660
-
Guskos N, Typek J, Papadopoulos G J, Maryniak M and Aidinis K, 2005. The
linewidths and integrated intensities of the d-d transitions in photoacoustic
spectra of polyamine copper(II) complexes. Materials Science-Poland 23:
955-960.
-
Wong W Y, Flik G, Groenen P M W, Swinkels D W, Thomas Ch M G, Copius-Peerebom
J H J, Merkus H W M, Steegers-Theunissen R P M, 2001. The impact of calcium,
magnesium, zinc, and copper in blood and seminal plasma on semen parameters
in men. Reprod. Toxicol. 15: 131-136 doi:10.1016/S0890-6238(01)00113-7
-
Guskos N, Papadopoulos G, Majszczyk J, Typek J, Wabia M, Likodimos V, Paschalidis
D G, Tossidis I A and Aidinis K, 2003. Charge transfer and f-f transition
studied by photoacoustic spectroscopy of [R(NO3)2(PicBH)2]NO3 and [R(NO3)3
(PicBH)2] complexes (R – rare earth ion). Acta Phys. Pol. A 103: 301-313.
-
Guskos N, Paschalidis D G, Majszczyk J, Typek J and Maryniak M, 2005. Photoacoustic
study of a new neodymium(III) hydrozone complex. Materials Science-Poland
23: 1030-1034.
-
Papadopoulos G J and Mair G L R, 1992. Amplitude and phase study of the
photoacoustic effect . J. Phys. D: Appl. Phys. 25: 722-729. doi:10.1088/0022-3727/25/4/019
-
Guskos N, Papadopoulos G P, Likodimos V, Patapis S, Yarmis D, Przepiera
A and Przepiera K, Majszczyk J, Typek J, Wabia M, Aidinis K and Drazek
Z, 2002. Photoacoustic, EPR and electrical conductivity investigations
of three synthetic mineral pigments: hematite, goethite and magnetite.
Mat. Research Bull. 37: 1051-1061. doi:10.1016/S0025-5408(02)00742-0
-
Duck F A. Physical Properties of Tissue: a Comprehensive Reference Book.
San Diego: Academic Press (1990).
-
Roggan A, Friebel M, Dörschel K, Hahn A and Müller G, 1999. Optical properties
of circulating human blood in the wavelength range 400–2500 nm. J. Biom.
Opt. 4: 36-46. doi:10.1117/1.429919
PMid:23015168
-
Graff R, Dassel A C M, Koelink M H, De Mul F F M, Aarmoudse J G and Zijlstra
W G, 1993. Optical properties of human dermis in vitro and in vivo. Appl.
Optics 32: 435-447. doi:10.1364/AO.32.000435
-
Matcher S J, Cope M and Delpy D T, 1997. In vivo measurements of the wavelength
dependence of tissue-scattering coefficients between 760 and 900 nm measured
with time-resolved spectroscopy. Appl. Optics 36: 386-396. doi:10.1364/AO.36.000386
PMid:18250686
-
Lademann J, Richter H, Sterry W and Priezzhev A V, 2001. Diagnostic potential
of erythrocytes aggregation and sedimentation measurements in whole blood
samples, Proc. SPIE 4263: 106-111. doi:10.1117/12.429328
-
Adams M J, Highfield J G and Kirkbright G F, 1980. Determination of the
absolute quantum efficiency of luminescence of solid materials employing
photoacoustic spectroscopy. Anal. Chem. 52: 1260-1264. doi:10.1021/ac50058a024
-
Lenci F, and Colombetti G, 1978. Photobehavior of Microorganisms: A Biophysical
Approach. Ann. Rev. of Biophys. and Bioeng. 7: 341-346. doi:10.1146/annurev.bb.07.060178.002013
PMid:96724
(c) Ukrainian Journal
of Physical Optics |