Home
page
Other articles
in this issue |
Optical absorption
of polydisperse TiO2: Effect of surface doping by transition metal cations
Kernazhitsky L., Shymanovska V., Gavrilko T.,
Naumov V. and Kshnyakin V.
Download this
article
Abstract. We have investigated the effect of doping of nanocrystalline
TiO2 with transition metal cations (Cu2+, Fe3+, Co2+ and Cr3+) on the properties
related to optical absorption. The metal-doped TiO2 samples obtained by
us have been characterised using an X-ray diffractometry, X-ray fluorescence
analysis, a scanning electron microscopy, and a UV–visible absorption
spectroscopy. It has been shown that the doping effects on the properties
of anatase and rutile are quite different, being much stronger and complicated
in the case of anatase. The anatase doped with Fe and Cr cations reveals
a ‘red’ shift of the absorption edge and narrowing of the bandgap.
Keywords: titanium dioxide, transition metals,
bandgap, UV and visible optical absorption
PACS: 61.72.Uj, 71.55.Eq, 78.40.Fy
UDC: 535.3
Ukr. J. Phys. Opt.
14 15-23
doi: 10.3116/16091833/14/1/15/2013
Received: 24.10.2012
Анотація. Досліджено вплив домішок
іонів перехідних металів Cu, Fe, Co і Cr на оптичні
спектри поглинання полідисперсних порошків
нанокристалічного TiO2 – рутилу і анатазу,
синтезованих за ідентичних умов експерименту.
Для всіх досліджених зразків рутилу спек-трального
зсуву краю оптичного поглинання не спостерігали,
тоді як для зразків анатазу, модифікованих
іонами Fe i Cr, зареєстровано „червоний”
зсув краю поглинання. Ширина забороненої
зони модифікованого рутилу практично не
змінювалася. Водночас ширина за-бороненої
зони модифікованого анатазу зменшувалась,
а найбільше – для зразків A/Cr і A/Fe. |
|
REFERENCES
-
Henderson M A, 2011. A surface science perspective on TiO2 photocatalysis.
Surf. Sci. Rep. 66: 185–297. http://dx.doi.org/10.1016/j.surfrep.2011.01.001
-
Fujishima A, Zhang X and Tryk D A, 2008. TiO2 photocatalysis and related
surface phenomena. Surf. Sci. Rep. 63: 515–582. http://dx.doi.org/10.1016/j.surfrep.2008.10.001
-
Diebold U, 2003. The surface science of titanium dioxide. Surf. Sci. Rep.
48: 53–229. http://dx.doi.org/10.1016/S0167-5729(02)00100-0
-
Anpo M, 2000. Use of visible light. Second-generation titanium oxide photocatalysts
prepared by the application of an advanced metal ion-implantation method.
Pure Appl. Chem. 72: 1787–1792. http://dx.doi.org/10.1351/pac200072091787
-
Takeuchi M, Matsuoka M and Anpo M, 2012. Ion engineering techniques for
the preparation of the highly effective TiO2 photocatalysts operating under
visible light irradiation. Res. Chem. Intermed. 38: 1261–1277. http://dx.doi.org/10.1007/s11164-011-0465-x
-
Shimanovskaya V V, Dvernyakova A A and Strelko V V, 1988. The kinetics
of the hydrolysis of titanium chloride in the presence of nuclei of anatase
TiO2 structure. Izv. Akad. Nauk SSSR, Neorgan. Mater. 24: 1188–1191.
-
Pascual J, Camassel J and Mathieu H, 1977. Resolved quadrupolar transition
in TiO2. Phys. Rev. Lett. 39: 1490–1493. http://dx.doi.org/10.1103/PhysRevLett.39.1490
-
Kernazhitsky L, Shymanovska V, Naumov V, Chernyak V, Khalyavka T and Kshnyakin
V, 2008. Effect of iron-group ions on UV absorption of TiO2. Ukr. J. Phys.
Opt. 9: 197–207. http://dx.doi.org/10.3116/16091833/9/3/197/2008
-
Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C and Giamello E, 1985. Photoluminescence
and photocatalytic activity of highly dispersed titanium oxide anchored
onto porous Vycor glass. J. Phys. Chem. 89: 5017–5021. http://dx.doi.org/10.1021/j100269a025
-
Amtout A and Leonelli R, 1995. Optical properties of rutile near its fundamental
band gap. Phys. Rev. B. 51: 6842–6851. http://dx.doi.org/10.1103/PhysRevB.51.6842
-
Ghosh A K, Wakim F G and Addiss R R, Jr, 1969. Photoelectronic processes
in rutile. Phys. Rev. 184: 979–988. http://dx.doi.org/10.1103/PhysRev.184.979
-
Khomenko V M, Langer K, Rager H and Fett A, 1998. Electronic absorption
by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys.
Chem. Minerals. 25: 338–346. http://dx.doi.org/10.1007/s002690050124
-
Jing L, Xin B, Yuan F, Xue L, Wang B and Fu H, 2006. Effects of surface
oxygen vacancies on photophysical and photochemical processes of Zn-doped
TiO2 nanoparticles and their relationships. J. Phys. Chem. B. 110: 17860–17865.
http://dx.doi.org/10.1021/jp063148z PMid:16956273
-
Serpone N, Lawless D, Disdier J and Herrmann J-M, 1994. Spectroscopic,
photoconductivity, and photocatalytic studies of TiO2 colloids – naked
and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir.
10: 643–652. http://dx.doi.org/10.1021/la00015a010
-
Silva R C, Alves E and Cruz M M, 2002. Conductivity behaviour of Cr implanted
TiO2. Nucl. Instrum. Meth. B. 191: 158–162. http://dx.doi.org/10.1016/S0168-583X(02)00541-4
-
Tang H, Berger H, Schmid P E and Levy F, 1994. Optical properties of anatase
(TiO2). Solid State Commun. 92: 267–271. http://dx.doi.org/10.1016/0038-1098(94)90889-3
-
Cardona M and Harbeke G, 1965.Optical properties and band structure of
wurtzite-type crystals and rutile. Phys. Rev. A. 137: 1467–1476.
-
Hossain F M, Sheppard L, Nowotny J and Murch G E, 2008. Optical properties
of anatase and rutile titanium dioxide: Ab initio calculations for pure
and anion-doped material. J. Phys. Chem. Solids. 69: 1820–1828. http://dx.doi.org/10.1016/j.jpcs.2008.01.017
-
Glassford K M and Chelikowsky J R, 1992. Structural and electronic properties
of titanium dioxide. Phys. Rev. B. 46: 1284–1298. http://dx.doi.org/10.1103/PhysRevB.46.1284
-
Hosaka N, Sekiya T, Satoko C and Kurita S, 1997. Optical properties of
single-crystal anatase TiO2. J. Phys. Soc. Japan. 66: 877–880. http://dx.doi.org/10.1143/JPSJ.66.877
-
Asahi R, Taga Y, Mannstadt W and Freeman A J, 2000. Electronic and optical
properties of anatase TiO2. Phys. Rev. B. 61: 7459–7465. http://dx.doi.org/10.1103/PhysRevB.61.7459
-
Praliaud H, Kodratoff Y, Coudurier G and Mathieu M V, 1974. Molecular spectrometric
studies of complexes copper-pyridine catalysts of the oxidative coupling
of phenols – I. Electronic and EPR studies of the catalytic complex.
Spectrochim. Acta A. 30: 1389–1398. http://dx.doi.org/10.1016/0584-8539(74)80146-7
-
Tauc J, in: F Abeles (Ed.), Optical properties of solids (North-Holland,
Amsterdam, 1972).
-
Pascual J, Camassel J and Mathieu H, 1978. Fine structure in the intrinsic
absorption edge of TiO2. Phys. Rev. B. 18: 5606–5614. http://dx.doi.org/10.1103/PhysRevB.18.5606
-
Daude N, Gout C and Jouanin C, 1977. Electronic band structure of titanium
dioxide. Phys. Rev. B. 15: 3229–3235. http://dx.doi.org/10.1103/PhysRevB.15.3229
-
Bak T, Nowotny J, Rekas M and Sorrell C C, 2003. Defect chemistry and semiconducting
properties of titanium dioxide: I. Intrinsic electronic equilibrium. J.
Phys. Chem. Solids. 64: 1043–1056. http://dx.doi.org/10.1016/S0022-3697(02)00479-1
-
Karvinen S, Hirva P and Pakkanen T A, 2003. Ab initio quantum chemical
studies of cluster models for doped anatase and rutile TiO2. J. Mol. Struct.:
Theochem. 626: 271–277. http://dx.doi.org/10.1016/S0166-1280(03)00108-8
-
Mo S D and Ching W Y, 1995. Electronic and optical properties of three
phases of titanium dioxide: rutile, anatase, and brookite. Phys. Rev. B.
51: 13023–13032. http://dx.doi.org/10.1103/PhysRevB.51.13023
-
Wang X H., Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y and Ishigaki
T, 2005. Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal
plasma: phase formation, defect structure, band gap, and magnetic properties.
J. Am. Chem. Soc. 127: 10982–10990. http://dx.doi.org/10.1021/ja051240n
PMid:16076205
-
Frova A, Body P J and Chen Y S, 1967. Electromodulation of the optical
constants of rutile in the UV. Phys. Rev. 157: 700–708. http://dx.doi.org/10.1103/PhysRev.157.700
-
Zhao X K and Fendler J H, 1991. Size quantization in semiconductor particulate
films. J. Phys. Chem. 95: 3716–3723. http://dx.doi.org/10.1021/j100162a051
-
Choudhury B and Choudhury A, 2012. Dopant induced changes in structural
and optical properties of Cr3+ doped TiO2 nanoparticles. Mater. Chem. Phys.
132: 1112–1118. http://dx.doi.org/10.1016/j.matchemphys.2011.12.083
(c) Ukrainian Journal
of Physical Optics |