Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical absorption of polydisperse TiO2: Effect of surface doping by transition metal cations

Kernazhitsky L., Shymanovska V., Gavrilko T., Naumov V. and Kshnyakin V.

Download this article

Abstract. We have investigated the effect of doping of nanocrystalline TiO2 with transition metal cations (Cu2+, Fe3+, Co2+ and Cr3+) on the properties related to optical absorption. The metal-doped TiO2 samples obtained by us have been characterised using an X-ray diffractometry, X-ray fluorescence analysis, a scanning electron microscopy, and a UV–visible absorption spectroscopy. It has been shown that the doping effects on the properties of anatase and rutile are quite different, being much stronger and complicated in the case of anatase. The anatase doped with Fe and Cr cations reveals a ‘red’ shift of the absorption edge and narrowing of the bandgap.

Keywords: titanium dioxide, transition metals, bandgap, UV and visible optical absorption

PACS: 61.72.Uj, 71.55.Eq, 78.40.Fy
UDC: 535.3
Ukr. J. Phys. Opt. 14 15-23
doi: 10.3116/16091833/14/1/15/2013
Received: 24.10.2012

Анотація. Досліджено вплив домішок іонів перехідних металів Cu, Fe, Co і Cr на оптичні спектри поглинання полідисперсних порошків нанокристалічного TiO2 – рутилу і анатазу, синтезованих за ідентичних умов експерименту. Для всіх досліджених зразків рутилу спек-трального зсуву краю оптичного поглинання не спостерігали, тоді як для зразків анатазу, модифікованих іонами Fe i Cr, зареєстровано „червоний” зсув краю поглинання. Ширина забороненої зони модифікованого рутилу практично не змінювалася. Водночас ширина за-бороненої зони модифікованого анатазу зменшувалась, а найбільше – для зразків A/Cr і A/Fe.

REFERENCES
 
  1. Henderson M A, 2011. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66: 185–297. http://dx.doi.org/10.1016/j.surfrep.2011.01.001
  2. Fujishima A, Zhang X and Tryk D A, 2008. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63: 515–582. http://dx.doi.org/10.1016/j.surfrep.2008.10.001 
  3. Diebold U, 2003. The surface science of titanium dioxide. Surf. Sci. Rep. 48: 53–229. http://dx.doi.org/10.1016/S0167-5729(02)00100-0 
  4. Anpo M, 2000. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl. Chem. 72: 1787–1792. http://dx.doi.org/10.1351/pac200072091787 
  5. Takeuchi M, Matsuoka M and Anpo M, 2012. Ion engineering techniques for the preparation of the highly effective TiO2 photocatalysts operating under visible light irradiation. Res. Chem. Intermed. 38: 1261–1277. http://dx.doi.org/10.1007/s11164-011-0465-x 
  6. Shimanovskaya V V, Dvernyakova A A and Strelko V V, 1988. The kinetics of the hydrolysis of titanium chloride in the presence of nuclei of anatase TiO2 structure. Izv. Akad. Nauk SSSR, Neorgan. Mater. 24: 1188–1191. 
  7. Pascual J, Camassel J and Mathieu H, 1977. Resolved quadrupolar transition in TiO2. Phys. Rev. Lett. 39: 1490–1493. http://dx.doi.org/10.1103/PhysRevLett.39.1490 
  8. Kernazhitsky L, Shymanovska V, Naumov V, Chernyak V, Khalyavka T and Kshnyakin V, 2008. Effect of iron-group ions on UV absorption of TiO2. Ukr. J. Phys. Opt. 9: 197–207. http://dx.doi.org/10.3116/16091833/9/3/197/2008 
  9. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C and Giamello E, 1985. Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J. Phys. Chem. 89: 5017–5021. http://dx.doi.org/10.1021/j100269a025 
  10. Amtout A and Leonelli R, 1995. Optical properties of rutile near its fundamental band gap. Phys. Rev. B. 51: 6842–6851. http://dx.doi.org/10.1103/PhysRevB.51.6842 
  11. Ghosh A K, Wakim F G and Addiss R R, Jr, 1969. Photoelectronic processes in rutile. Phys. Rev. 184: 979–988. http://dx.doi.org/10.1103/PhysRev.184.979 
  12. Khomenko V M, Langer K, Rager H and Fett A, 1998. Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys. Chem. Minerals. 25: 338–346. http://dx.doi.org/10.1007/s002690050124 
  13. Jing L, Xin B, Yuan F, Xue L, Wang B and Fu H, 2006. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B. 110: 17860–17865. http://dx.doi.org/10.1021/jp063148z PMid:16956273 
  14. Serpone N, Lawless D, Disdier J and Herrmann J-M, 1994. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids – naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir. 10: 643–652. http://dx.doi.org/10.1021/la00015a010 
  15. Silva R C, Alves E and Cruz M M, 2002. Conductivity behaviour of Cr implanted TiO2. Nucl. Instrum. Meth. B. 191: 158–162. http://dx.doi.org/10.1016/S0168-583X(02)00541-4 
  16. Tang H, Berger H, Schmid P E and Levy F, 1994. Optical properties of anatase (TiO2). Solid State Commun. 92: 267–271. http://dx.doi.org/10.1016/0038-1098(94)90889-3 
  17. Cardona M and Harbeke G, 1965.Optical properties and band structure of wurtzite-type crystals and rutile. Phys. Rev. A. 137: 1467–1476. 
  18. Hossain F M, Sheppard L, Nowotny J and Murch G E, 2008. Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J. Phys. Chem. Solids. 69: 1820–1828. http://dx.doi.org/10.1016/j.jpcs.2008.01.017 
  19. Glassford K M and Chelikowsky J R, 1992. Structural and electronic properties of titanium dioxide. Phys. Rev. B. 46: 1284–1298. http://dx.doi.org/10.1103/PhysRevB.46.1284 
  20. Hosaka N, Sekiya T, Satoko C and Kurita S, 1997. Optical properties of single-crystal anatase TiO2. J. Phys. Soc. Japan. 66: 877–880. http://dx.doi.org/10.1143/JPSJ.66.877 
  21. Asahi R, Taga Y, Mannstadt W and Freeman A J, 2000. Electronic and optical properties of anatase TiO2. Phys. Rev. B. 61: 7459–7465. http://dx.doi.org/10.1103/PhysRevB.61.7459 
  22. Praliaud H, Kodratoff Y, Coudurier G and Mathieu M V, 1974. Molecular spectrometric studies of complexes copper-pyridine catalysts of the oxidative coupling of phenols – I. Electronic and EPR studies of the catalytic complex. Spectrochim. Acta A. 30: 1389–1398. http://dx.doi.org/10.1016/0584-8539(74)80146-7 
  23. Tauc J, in: F Abeles (Ed.), Optical properties of solids (North-Holland, Amsterdam, 1972). 
  24. Pascual J, Camassel J and Mathieu H, 1978. Fine structure in the intrinsic absorption edge of TiO2. Phys. Rev. B. 18: 5606–5614. http://dx.doi.org/10.1103/PhysRevB.18.5606 
  25. Daude N, Gout C and Jouanin C, 1977. Electronic band structure of titanium dioxide. Phys. Rev. B. 15: 3229–3235. http://dx.doi.org/10.1103/PhysRevB.15.3229 
  26. Bak T, Nowotny J, Rekas M and Sorrell C C, 2003. Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium. J. Phys. Chem. Solids. 64: 1043–1056. http://dx.doi.org/10.1016/S0022-3697(02)00479-1 
  27. Karvinen S, Hirva P and Pakkanen T A, 2003. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2. J. Mol. Struct.: Theochem. 626: 271–277. http://dx.doi.org/10.1016/S0166-1280(03)00108-8 
  28. Mo S D and Ching W Y, 1995. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys. Rev. B. 51: 13023–13032. http://dx.doi.org/10.1103/PhysRevB.51.13023 
  29. Wang X H., Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y and Ishigaki T, 2005. Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J. Am. Chem. Soc. 127: 10982–10990. http://dx.doi.org/10.1021/ja051240n PMid:16076205 
  30. Frova A, Body P J and Chen Y S, 1967. Electromodulation of the optical constants of rutile in the UV. Phys. Rev. 157: 700–708. http://dx.doi.org/10.1103/PhysRev.157.700 
  31. Zhao X K and Fendler J H, 1991. Size quantization in semiconductor particulate films. J. Phys. Chem. 95: 3716–3723. http://dx.doi.org/10.1021/j100162a051 
  32. Choudhury B and Choudhury A, 2012. Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanoparticles. Mater. Chem. Phys. 132: 1112–1118. http://dx.doi.org/10.1016/j.matchemphys.2011.12.083 
(c) Ukrainian Journal of Physical Optics