Home
page
Other articles
in this issue |
Growth, crystal structure,
thermal properties and optical anisotropy of Tl4CdI6
single crystals
Franiv A. V., Kushnir O. S., Girnyk I. S.,
Franiv V. A., Kityk I., Piasecki M. and Plucinski K. J.
Download this
article
Abstract. We report on the growth and initial thermal and optical
characterisation of a single-crystalline ternary halide, Tl4CdI6. The crystal
is described by the centrosymmetric tetragonal class P4/mnc at the room
temperature. The parameters of linear thermal expansion are studied in
the temperature region 330–500 K. The crystal is optically positive and
reveals very high optical anisotropy (the birefringence ~ 0.13 at 633 nm).
Its optical pseudo-gap value corresponds to wide-gap semiconductors. A
broad maximum at 400–410 K found in the temperature dependence of IR
radiation-induced second harmonic generation may be indication of a polymorphic
phase transformation.
Keywords: ternary halide crystals, А4ВХ6,
thermal expansion, inversion centre, optical anisotropy, second harmonic
generation, phase transformations
PACS: 42.65.Ky, 61.10.Nz, 61.66.Fn, 64.70.Kb,
65.70.+y, 78.20.Fm
UDC: 548.0, 535.5
Ukr. J. Phys. Opt.
14 6-14
doi: 10.3116/16091833/14/1/6/2013
Received: 17.11.2012
Анотація. Ми повідомляємо про вирощування
та результати попередньої термічної та
оп-тичної характеризації монокристалічного
тернарного галоїду Tl4CdI6. За кімнатної темпе-ратури
кристали описуються центросиметричним
тетрагональним класом P4/mnc. Вивчено параметри
лінійного термічного розширення в діапазоні
330–500 К. Кристали оптично до-датні і виявляють
дуже високу оптичну анізотропію (подвійне
заломлення ~ 0.13 при 633 нм). Величина їхньої
оптичної псевдощілини відповідає широкозонним
напівпровідникам. Широкий максимум при
400–410 К, знайдений у температурній залежності
генерації другої гармоніки, індукованої
ІЧ-випромінюванням, може вказувати на наявність
поліморфного фазового пе-ретворення. |
|
REFERENCES
-
Zandbergen H W, 1979. The crystal structure of α-thallium hexaiodochromate,
α-Tl4CrI6. Acta Cryst. B. 35: 2852–2855. doi:10.1107/S0567740879010815
-
Ammlung R L, Scaringe R P, Ibers J A, Shriver D F and Whitmore D H, 1979.
Trends in heavy-metal solid state ionic conductors: A comparison of Cu+,
Ag+, In+, and Tl+ transport. J. Solid State Chem. 29: 401–415. doi:10.1016/0022-4596(79)90197-X
-
Nagase H, Furukawa and Nakamura D, 1990. Electrical conductivity and thallium
spin-lattice relaxation time measurements of Tl4HgBr6 and Tl4HgI6. Bull.
Chem. Soc. Japan. 63: 3329–3330. doi:10.1246/bcsj.63.3329
-
Sreejith M Nair, Yahya A I, Rafiuddin and Afaq Ahmad, 1996. Ionic conductivity
and dielectric constant of Tl4CdI6. Solid State Ionics. 86–88: 137–139.
-
Sarfaraz Nawaz M and Rafiuddin, 2007. Ionic conduction and effect of cation
doping in Tl4HgI6. Ionics. 13: 35–40. doi:10.1007/s11581-007-0069-z
-
Kalyagin D S, Ermolenko Yu E and Vlasov Yu G, 2008. Diffusion of Tl-204
isotope and ionic con-ductivity in Tl4HgI6 membrane material for chemical
sensors. Rus. J. Appl. Chem. 81: 2172–2174. doi:10.1134/S1070427208120264
-
Klintenberg M, Derenzo S E and Weber M J, 2002. Potential scintillators
identified by electronic structure. Nucl. Instr. Meth. Phys. Res. A. 486:
298–302. doi:10.1016/S0168-9002(02)00723-4
-
Kahler D, Singh N B, Knuteson D J, Wagner B, Berghmans A, McLaughlin S,
King M, Schwartz K, Suhre D and Gotlieb M, 2011. Performance of novel materials
for radiation detection: Tl3AsSe3, TlGaSe2, and Tl4HgI6. Nucl. Instr. Meth.
Phys. Res. A. 652: 183–185. doi:10.1016/j.nima.2010.09.057
-
Avdienko K I, Badikov D V, Badikov V V, Chizhikov V I, Panyutin V L, Shevyrdyaeva
G S, Shcherbakov S I and Shcherbakova E S, 2003. Optical properties of
thallium mercury iodide. Opt. Mater. 23: 569–573. doi:10.1016/S0925-3467(03)00023-5
-
Singh N B, Suhre D R, Green K, Fernelius N and Hopkins F K, 2005. Periodically
poled materials for long wavelength infrared (LWIR) NLO applications. J.
Cryst. Growth. 274: 132–137. doi:10.1016/j.jcrysgro.2004.09.098
-
Hagemann В M and Weber В H-J, 1996. Are ternary halides useful materials
for nonlinear optical applications? Appl. Phys. A. 63: 67–74. doi:10.1007/BF01579747
-
Von Berthold H J, Haas D and Tamme R, 1979. Die Kristallstruktur des Thallium(I)-hexaiodomercurat(II),
Tl4HgI6. Zeit. anorg. allg. Chem. 456: 29–40.
-
Beck H P and Milius W, 1988. ns2 cations as a prerequisite for a structure
type and their interac-tion in ternary halides with the formula type A4BX6
(A: In, Tl; B: Cd, Pb, Ge; X: Cl, Br, I). Zeit. anorg. allg. Chem. 652:
105–114.
-
Tkachenko V I, Semrad E E, Traksler Z A and Kovach A P, 1990. Region of
homogeneity of Tl4HgI6. Izv. AN SSSR, Ser. Fiz. 26: 2240–2242.
-
Huart J and Durif A, 1966. Structure de Tl4HgI6. Acad. Sci. C. R. Paris.
257: 657–661.
-
Badikov D V, Badikov V V, Kuzmicheva G M, Panyutin V L, Rybakov V. B.,
Chizhikov V I, Shevyrdyaeva G S and Shcherbakova E S, 2004. Growth and
X-ray diffraction study of Tl4HgI6 crystals. Inorganic Mater. 40: 314–320.
doi:10.1023/B:INMA.0000020535.59699.ff
-
Ammlung R L, Shriver D F, Kamimoto M and Whitmore D H, 1977. Conductivity
and Raman spectroscopy of new indium(I) and thallium(I) ionic conductors.
In4CdI6, In2ZnI4, Tl2ZnI4, and the related compound Tl4HgI6. J. Solid State
Chem. 21: 185–193. doi:10.1016/0022-4596(77)90195-5
-
Kennedy J H, Schaupp C, Yuan Yang and Zhengming Zhang, 1990. Composition
and properties of thallium mercury iodide. J. Solid State Chem. 88: 555–563.
doi:10.1016/0022-4596(90)90253-T
-
Piasecki M, Lakshminarayana G, Fedorchuk A O, Kushnir O S, Franiv V A,
Franiv A V, Myronchuk G and Plucinski K J, 2012. Temperature operated infrared
nonlinear optical materials based on Tl4HgI6. J. Mater. Sci.: Mater. Electron.
doi:10.1007/s10854-012-0903-6
-
SRM 676: Alumina internal standard for quantitative analysis by X-ray powder
diffraction (National Institute of Standards and Technology, US Department
of Commerce) (Gaithersburg, MD, 2005).
-
Stoe WinXPOW. Version 3.03 (Darmstadt, Stoe & Cie GmbH, 2010).
-
Girnyk I S, Kushnir O S and Shopa R Y, 2005. Linear thermal expansion of
ferroelectric deuter-ated triglycine sulphate. Ferroelectrics. 317: 75–78.
doi:10.1080/00150190590963471
-
Kityk I V, 2003. IR-induced second harmonic generation in Sb2Te3−BaF2−PbCl2
glasses. J. Phys. Chem. B. 107: 10083–10087. doi:10.1021/jp030058a
-
Balakirev M K, Smirnov V A, Vostrikova L I, Kityk I V, Kasperczyk J and
Gruhn W, 2003. Gi-ant increase of the second harmonic radiation's absorption
during optical poling of oxide glass. J. Mod. Opt. 50: 1237–1244. doi:10.1080/09500340308235198
-
Kassab L R P, de A Pinto R, Kobayashi R A, Piasecki M, Bragiel P and Kityk
I V, 2007. Photoinduced non-linear optics of Eu2O3 doped TeO2–GeO2–PbO
glasses. J. Phys. D: Appl. Phys. 40: 1642–1645.
-
Shaskolskaya M P. Acoustic crystals. Moscow: Nauka (1982) (in Russian).
-
Zel'dovich B. Ya., Kapitskii Yu. E. and Churikov V M, 1991. Induced χ(2)
gratings in glasses. J. Exp. Theor. Phys. Lett. 53: 78–81.
-
Dominic V and Feinberg J, 1993. Light-induced second-harmonic generation
in glass via mul-tiphoton ionization. Phys. Rev. Lett. 71: 3446–3449.
doi:10.1103/PhysRevLett.71.3446
PMid:10054979
(c) Ukrainian Journal
of Physical Optics |