Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Growth, crystal structure, thermal properties and optical anisotropy of Tl4CdI6 single crystals

Franiv A. V., Kushnir O. S., Girnyk I. S., Franiv V. A., Kityk I., Piasecki M. and Plucinski K. J. 

Download this article

Abstract. We report on the growth and initial thermal and optical characterisation of a single-crystalline ternary halide, Tl4CdI6. The crystal is described by the centrosymmetric tetragonal class P4/mnc at the room temperature. The parameters of linear thermal expansion are studied in the temperature region 330–500 K. The crystal is optically positive and reveals very high optical anisotropy (the birefringence ~ 0.13 at 633 nm). Its optical pseudo-gap value corresponds to wide-gap semiconductors. A broad maximum at 400–410 K found in the temperature dependence of IR radiation-induced second harmonic generation may be indication of a polymorphic phase transformation.

Keywords: ternary halide crystals, А4ВХ6, thermal expansion, inversion centre, optical anisotropy, second harmonic generation, phase transformations 

PACS: 42.65.Ky, 61.10.Nz, 61.66.Fn, 64.70.Kb, 65.70.+y, 78.20.Fm
UDC: 548.0, 535.5 
Ukr. J. Phys. Opt. 14 6-14
doi: 10.3116/16091833/14/1/6/2013
Received: 17.11.2012

Анотація. Ми повідомляємо про вирощування та результати попередньої термічної та оп-тичної характеризації монокристалічного тернарного галоїду Tl4CdI6. За кімнатної темпе-ратури кристали описуються центросиметричним тетрагональним класом P4/mnc. Вивчено параметри лінійного термічного розширення в діапазоні 330–500 К. Кристали оптично до-датні і виявляють дуже високу оптичну анізотропію (подвійне заломлення ~ 0.13 при 633 нм). Величина їхньої оптичної псевдощілини відповідає широкозонним напівпровідникам. Широкий максимум при 400–410 К, знайдений у температурній залежності генерації другої гармоніки, індукованої ІЧ-випромінюванням, може вказувати на наявність поліморфного фазового пе-ретворення.

REFERENCES
  1. Zandbergen H W, 1979. The crystal structure of α-thallium hexaiodochromate, α-Tl4CrI6. Acta Cryst. B. 35: 2852–2855. doi:10.1107/S0567740879010815
  2. Ammlung R L, Scaringe R P, Ibers J A, Shriver D F and Whitmore D H, 1979. Trends in heavy-metal solid state ionic conductors: A comparison of Cu+, Ag+, In+, and Tl+ transport. J. Solid State Chem. 29: 401–415. doi:10.1016/0022-4596(79)90197-X
  3. Nagase H, Furukawa and Nakamura D, 1990. Electrical conductivity and thallium spin-lattice relaxation time measurements of Tl4HgBr6 and Tl4HgI6. Bull. Chem. Soc. Japan. 63: 3329–3330. doi:10.1246/bcsj.63.3329
  4. Sreejith M Nair, Yahya A I, Rafiuddin and Afaq Ahmad, 1996. Ionic conductivity and dielectric constant of Tl4CdI6. Solid State Ionics. 86–88: 137–139.
  5. Sarfaraz Nawaz M and Rafiuddin, 2007. Ionic conduction and effect of cation doping in Tl4HgI6. Ionics. 13: 35–40. doi:10.1007/s11581-007-0069-z
  6. Kalyagin D S, Ermolenko Yu E and Vlasov Yu G, 2008. Diffusion of Tl-204 isotope and ionic con-ductivity in Tl4HgI6 membrane material for chemical sensors. Rus. J. Appl. Chem. 81: 2172–2174. doi:10.1134/S1070427208120264
  7. Klintenberg M, Derenzo S E and Weber M J, 2002. Potential scintillators identified by electronic structure. Nucl. Instr. Meth. Phys. Res. A. 486: 298–302. doi:10.1016/S0168-9002(02)00723-4
  8. Kahler D, Singh N B, Knuteson D J, Wagner B, Berghmans A, McLaughlin S, King M, Schwartz K, Suhre D and Gotlieb M, 2011. Performance of novel materials for radiation detection: Tl3AsSe3, TlGaSe2, and Tl4HgI6. Nucl. Instr. Meth. Phys. Res. A. 652: 183–185. doi:10.1016/j.nima.2010.09.057
  9. Avdienko K I, Badikov D V, Badikov V V, Chizhikov V I, Panyutin V L, Shevyrdyaeva G S, Shcherbakov S I and Shcherbakova E S, 2003. Optical properties of thallium mercury iodide. Opt. Mater. 23: 569–573. doi:10.1016/S0925-3467(03)00023-5
  10. Singh N B, Suhre D R, Green K, Fernelius N and Hopkins F K, 2005. Periodically poled materials for long wavelength infrared (LWIR) NLO applications. J. Cryst. Growth. 274: 132–137. doi:10.1016/j.jcrysgro.2004.09.098
  11. Hagemann В M and Weber В H-J, 1996. Are ternary halides useful materials for nonlinear optical applications? Appl. Phys. A. 63: 67–74. doi:10.1007/BF01579747
  12. Von Berthold H J, Haas D and Tamme R, 1979. Die Kristallstruktur des Thallium(I)-hexaiodomercurat(II), Tl4HgI6. Zeit. anorg. allg. Chem. 456: 29–40.
  13. Beck H P and Milius W, 1988. ns2 cations as a prerequisite for a structure type and their interac-tion in ternary halides with the formula type A4BX6 (A: In, Tl; B: Cd, Pb, Ge; X: Cl, Br, I). Zeit. anorg. allg. Chem. 652: 105–114.
  14. Tkachenko V I, Semrad E E, Traksler Z A and Kovach A P, 1990. Region of homogeneity of Tl4HgI6. Izv. AN SSSR, Ser. Fiz. 26: 2240–2242.
  15. Huart J and Durif A, 1966. Structure de Tl4HgI6. Acad. Sci. C. R. Paris. 257: 657–661.
  16. Badikov D V, Badikov V V, Kuzmicheva G M, Panyutin V L, Rybakov V. B., Chizhikov V I, Shevyrdyaeva G S and Shcherbakova E S, 2004. Growth and X-ray diffraction study of Tl4HgI6 crystals. Inorganic Mater. 40: 314–320. doi:10.1023/B:INMA.0000020535.59699.ff
  17. Ammlung R L, Shriver D F, Kamimoto M and Whitmore D H, 1977. Conductivity and Raman spectroscopy of new indium(I) and thallium(I) ionic conductors. In4CdI6, In2ZnI4, Tl2ZnI4, and the related compound Tl4HgI6. J. Solid State Chem. 21: 185–193. doi:10.1016/0022-4596(77)90195-5
  18. Kennedy J H, Schaupp C, Yuan Yang and Zhengming Zhang, 1990. Composition and properties of thallium mercury iodide. J. Solid State Chem. 88: 555–563. doi:10.1016/0022-4596(90)90253-T
  19. Piasecki M, Lakshminarayana G, Fedorchuk A O, Kushnir O S, Franiv V A, Franiv A V, Myronchuk G and Plucinski K J, 2012. Temperature operated infrared nonlinear optical materials based on Tl4HgI6. J. Mater. Sci.: Mater. Electron. doi:10.1007/s10854-012-0903-6
  20. SRM 676: Alumina internal standard for quantitative analysis by X-ray powder diffraction (National Institute of Standards and Technology, US Department of Commerce) (Gaithersburg, MD, 2005).
  21. Stoe WinXPOW. Version 3.03 (Darmstadt, Stoe & Cie GmbH, 2010).
  22. Girnyk I S, Kushnir O S and Shopa R Y, 2005. Linear thermal expansion of ferroelectric deuter-ated triglycine sulphate. Ferroelectrics. 317: 75–78. doi:10.1080/00150190590963471
  23. Kityk I V, 2003. IR-induced second harmonic generation in Sb2Te3−BaF2−PbCl2 glasses. J. Phys. Chem. B. 107: 10083–10087. doi:10.1021/jp030058a
  24. Balakirev M K, Smirnov V A, Vostrikova L I, Kityk I V, Kasperczyk J and Gruhn W, 2003. Gi-ant increase of the second harmonic radiation's absorption during optical poling of oxide glass. J. Mod. Opt. 50: 1237–1244. doi:10.1080/09500340308235198
  25. Kassab L R P, de A Pinto R, Kobayashi R A, Piasecki M, Bragiel P and Kityk I V, 2007. Photoinduced non-linear optics of Eu2O3 doped TeO2–GeO2–PbO glasses. J. Phys. D: Appl. Phys. 40: 1642–1645.
  26. Shaskolskaya M P. Acoustic crystals. Moscow: Nauka (1982) (in Russian).
  27. Zel'dovich B. Ya., Kapitskii Yu. E. and Churikov V M, 1991. Induced χ(2) gratings in glasses. J. Exp. Theor. Phys. Lett. 53: 78–81.
  28. Dominic V and Feinberg J, 1993. Light-induced second-harmonic generation in glass via mul-tiphoton ionization. Phys. Rev. Lett. 71: 3446–3449. doi:10.1103/PhysRevLett.71.3446 PMid:10054979
(c) Ukrainian Journal of Physical Optics