Home
page
Other articles
in this issue |
Energy currents for
quasi-monochromatic fields
Download this
article
Mokhun I. I., Galushko Yu. K., Kharitonova
Ye. S. and
Viktorovskaya Ju. Yu.
Abstract. Relations for the components of Poynting vector are
obtained for quasi-monochromatic waves. It is shown that the behaviour
of the transverse Poynting vector component is similar to that for the
coherent waves. The total angular mo-mentum of the quasi-monochromatic
wave can be separated into orbital and spin parts. Using the example of
a Gaussian beam, we show that the spin angular mo-mentum is associated
with coherence characteristics of the optical beam.
Keywords: Poynting vector, angular momentum,
quasi-monochromatic wave, Stokes parameters, Gaussian wave.
PACS: 42.25.-p, 42.50.Ct
UDC: 535.1
Ukr. J. Phys. Opt.
13 151-157
doi: 10.3116/16091833/13/3/151/2012
Received: 28.02.2012
Анотація. Отримані співвідношення
для компонент вектора Пойнтинга для квазі
монохроматичної хвилі. Показано, що поведінка
поперечної компоненти вектора Пойнтинга
є подібною до поведінки у випадку когерентних
хвиль. Загальний кутовий момент квазі монохроматичної
хвилі може бути розділеним на орбітальний
і спіновий моменти. Використовуючи приклад
гаусівського променя ми показали, що спіновий
кутовий момент асоціюється з когерентними
характеристиками оптичного променя. |
|
REFERENCES
-
Lang M J and Block S M, 2003. Resource letter: LBOT-1: Laser-based optical
tweezers. Amer. J. Phys. 71: 201–215. DOI:10.1119/1.1532323PMid:16971965
PMCid:1564163
-
Allen L, Padgett M J and Babiker M. The orbital angular momentum of light.
In ‘Progress in Optics’ XXXIX (Ed. by E. Wolf), Elsevier Science B.
V. (1999).
-
Bekshaev A, Soskin M and Vasnetsov M. Paraxial light beams with angular
momentum. New York: Nova Science Publishers (2008).
-
Mokhun I. Introduction to linear singular optics. In ‘Optical correlation
techniques and applica-tions‘, Chapter 1 (Ed. by O. V. Angelsky). Bellingham:
SPIE Press (2007). DOI:10.1117/3.714999.ch1
-
Bekshaev A, Bliokh K and Soskin M, 2011. Internal flows and energy circulation
in light beams. J. Opt. 13: 053001. DOI:10.1088/2040-8978/13/5/053001
-
Serna J and Movilla J M, 2001. Orbital angular momentum of partially coherent
beams. Opt. Lett. 26: 405–407. DOI:10.1364/OL.26.000405
PMid:18040335
-
Angelsky O V, Gorsky M P, Maksimyak P P, Maksimyak A P, Hanson S G and
Zenkova C Yu, 2011. Investigation of optical currents in coherent and partially
coherent vector fields. Opt. Expr. 19: 660–672. DOI:10.1364/OE.19.000660PMid:21263605
-
Angelsky O V, Hanson S G, Zenkova C Yu, Gorsky M P and Gorodyns’ka N
V, 2009. On polari-zation metrology (estimation) of the degree of coherence
of optical waves. Opt. Expr. 17: 15623–15634. DOI:10.1364/OE.17.015623PMid:19724561
-
Born M and Wolf E. Principles of optics (6th edition). Oxford: Pergamon
(1980).
-
Perina J. Coherence of light (2nd edition). D. Reidel. Dordrecht (1985).
-
Nieto-Vesperinas M. Scattering and diffraction in physical optics. Wiley-Interscience
Publication, John Wiley & Sons (1981).
-
Khrobatin R, Mokhun I and Viktorovskaya Ju, 2008. Potentiality of experimental
analysis for characteristics of the Poynting vector components. Ukr. J.
Phys. Opt. 9: 182–186. DOI:10.3116/16091833/9/3/182/2008
-
Dennis M R, O’Holleran K and Padgett M J, 2009. Singular optics: optical
vortices and polariza-tion singularities. Prog. Opt. 53: 293–363. DOI:10.1016/S0079-6638(08)00205-9
-
Mokhun I and Khrobatin R, 2008. Shift of application point of angular momentum
in the area of elementary polarization singularity. J. Opt. A: Pure Appl.
Opt. 10: 064015. DOI:10.1088/1464-4258/10/6/064015
-
Grawford F S. Waves (Berkeley Physics Course), Vol. 3. New York: McGraw-Hill
Company. (1968).
(c) Ukrainian Journal
of Physical Optics |