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Abstract. Relations for the components of Poynting vector are obtained for quasi-
monochromatic waves. It is shown that the behaviour of the transverse Poynting 
vector component is similar to that for the coherent waves. The total angular mo-
mentum of the quasi-monochromatic wave can be separated into orbital and spin 
parts. Using the example of a Gaussian beam, we show that the spin angular mo-
mentum is associated with coherence characteristics of the optical beam. 
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1. Introduction 
There is no doubt that the interest to singular optics has permanently increased lately. To a great 
extent, this is due to attractive and promising optical applications such as optical tweezers (see, 
e.g., [1]). In its turn, applications of such kind have caused advanced studies of fine structure of 
optical fields, the characteristics of which may usually be considered as representing some specific 
spatial distributions. It has been shown earlier that, in the vicinity of optical singularities, the fields 
acquire specific values of the averaged angular momenta, which represent maxima or minima in a 
given area [2–4]. However, the density zj  of such an angular momentum is only defined at the 

axis 0r   (a ‘point of applying’) about which the quantity zj  is calculated. As a result, some 

ambiguity appears. On the other hand, another physical quantity closely related to the angular 
momentum, a space distribution of characteristics of the Poynting vector (mainly its transverse 
component) is given by a unique function of the coordinates of each field point. Therefore investi-
gations of behaviour of the Poynting vector defining ‘energy currents’ (or flows) represent an ex-
tremely important problem [4, 5]. 

It has to be noticed that the overwhelming majority of the studies performed thus far have 
been devoted to the monochromatic case [2–5]. In other words, the studies that deal with the angu-
lar momentum and the energy currents creating it in the polychromatic waves are at their first 
stage only [6–8]. At the same time, this field of researches has quite good prospects, first of all 
from the fundamental points of view. In our opinion, one of the crucial points is associated with 
the hypothesis that the angular momentum value must be somehow linked to coherence character-
istics of the polychromatic waves. The existence of such a relationship seems to be obvious. It is 
well known that the angular momentum can be separated into its orbital and spin parts [2, 3, 5]. 
Then the above assumption follows at least from the fact that the spin angular momentum (see, 



Mokhun I. I. et al 

Ukr. J. Phys. Opt. 2012, V13, №3 152 

e.g., [2]) should be defined by a determinate circulation of the field vector. It would be natural that 
the ‘level of such determinancy’ should be linked to the coherence. 

It is also well known that the instantaneous Poynting vector is defined by the relation (see [9]) 
p E H 

  ,      (1) 

where ,E H
 

 are the instantaneous strengths of electric and magnetic fields, respectively. As a rule, 
a time-averaged value of this vector is relevant in optics. A general expression for this parameter 
may be quite simply derived (at least, for the instantaneous Poynting vector), if we take into ac-
count the fact that the real perturbance ( )kE t  of each of the Cartesian components of the electric 

or magnetic fields may be represented as a Fourier integral [10, 11], 

0

( ) ( )cos[ ( ) 2 ]iE t a t d    


  ,            (2) 

where , ,i x y z . However, this cumbersome relation does not allow for carrying out simple and 

detailed enough analysis. The situation is essentially simplified if a quasi-monochromatic wave is 
considered. It is known that this wave is defined as having relatively narrow spectrum, so that (see 
[9, 10]) 

1



 ,     (3) 

with   denoting the frequency range where ( )E t


 is essentially different from zero and   being 

the mean (or the main) frequency. 
In the first part of our present research we will show that, once the above assumption and the 

paraxial approximation are satisfied, the components of the averaged Poynting vector may be writ-
ten in the form, which is very similar to that typical for completely coherent waves. After that, we 
will ascertain the relationship between the field angular momentum and the spectral range of the 
wave, using the example of a quasi-monochromatic Gaussian wave. 

2. Poynting vector components for the quasi-monochromatic field 
Let us consider a quasi-monochromatic wave, which obeys additionally the paraxial approxima-
tion. Then each of the Cartesian components ( )iE t  of the electric or magnetic fields may be repre-

sented as [9, 10] 

( ) ( ) cos[ ( ) 2 ]i i iE t A t t t   ,              (4) 

where ( )iA t  and ( )i t  are slowly-varying functions when compared with the term cos(2 )t . 

As a consequence, the instantaneous Poynting vector may be derived under this assumption, quite 
similarly to strongly coherent case [4]: 
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where 
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and 

,
2
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i i i

i ii
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.    (7) 

Here ,i iA   are interpreted according to Eq. (4), ,l l
i iA   mean the partial derivatives respectively 

of ( )iA t  and ( )i t , and , ,i l x y . One has to note that only x- and y- electric components appear 

in Eqs. (5)–(7). 
Let us carry out averaging over time in Eqs. (5)–(7). One can easily show that, under our as-

sumptions (see Eq. (3) and Eq. (4)), the following expressions hold true as a ‘basis’ for the averag-
ing procedure: 
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Here   is the effective local phase difference and ,i l   the phase functions of the components 

averaged over time. 
After averaging Eqs. (4)–(7) we get 
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,   (9) 

where is  are the Stokes parameters and 2  .  

Thus, one can state that the notion of the averaged Poynting vector components for the quasi-
chromatic waves is the same as that for the strongly monochromatic waves [12], with the corre-
sponding determinate parameters. The terms in the square brackets appearing in the first and sec-
ond lines of Eqs. (9) may be called as a structural or transverse orbital part of the field energy den-
sity [5]. In the coherent case, just these terms are responsible for the appearance of orbital momen-
tum in the area of a vortex (for a scalar field) or a C-point (a point of circular polarisation) in in-
homogeneously polarised fields [2, 3, 13, 14]. 

The last terms that appear in the expressions for the transverse components cause the spin en-
ergy currents, which define a spin angular momentum of the field. Let us take into account that the 
angular momentum density is given by the relation (see, e.g., [2]) 
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zj r P 
 = ( )y xxP yP .      (10) 

Then one can state that, similar to the coherent case, the total angular momentum for the poly-
chromatic beam (or, at least, for the wave with a narrow enough spectrum and in the frame of the 
paraxial approximation) can be separated into its orbital and spin parts. 

3. Angular momentum of quasi-chromatic Gaussian beam 
Let us repeat once again our principal statement: the angular momentum of the beam, or the angu-
lar momentum of the field area, must be related to the coherence characteristics of the wave. For 
instance, the spin momentum should become zero in the limiting case of absolutely depolarised 
wave.  

As follows from the expressions for the Poynting vector components given by Eq. (9), at 
least the spin energy currents, and therefore the spin angular momentum associated with them, are 
linked to the coherence characteristics of the wave. This follows from the fact that different spec-
tral components should contribute differently to the total angular momentum of the field. The latter 
situation necessarily occurs if the analysed field passes through a setup consisting of a polariser 
and a quarter-wave plate oriented at the angle 45  with respect to the polariser axis. Let us assume 
that the thickness of the plate is chosen such that the spectral component with the frequency   
becomes circularly polarised behind the plate. It is evident that the other spectral components 
would then be polarised elliptically. 

Now we shall demonstrate efficiency of such a procedure for a Gaussian beam. Let the fre-
quency spectrum of this beam correspond to the normal distribution. We notice that a presence of 
‘negative’ frequencies in this distribution does not play an essential part, for the energy decreases 
rapidly when the frequency deviates from the central one. In this case the Cartesian components of 
the wave normalised to unity may be represented in the following form: 
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where   is the ‘spatial width’ of the beam,   its ‘spectral width’ that defines the effective fre-

quency band  , 0  the constant phase associated with each spectral component, and   the 

phase shift between the orthogonal components, which appears when the given spectral component 
passes through the quarter-wave plate. This shift may be identified via the relation 

2v
 


  .        (12) 

Then the components of the Poynting vector become as follows: 
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This is due to the fact that the phases of all the spectral components are practically constant. 
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In other terms, the transverse energy currents and the angular momentum density depend only on 
the spatial changes in the 4th Stokes parameter. Let us determine this Stokes parameter for our 
case. As shown by Born and Wolf [9], the resulting elements of the coherence matrix represent a 
sum of the elementary elements corresponding to each frequency  . As a consequence, the 4th 
Stokes parameter 3s  would be given by 

2 22 2

3 2 2 2
1( ) exp exp

16yx xy
x ys j J J  

  

  
          

.  (14) 

Then one can write out the transverse components as 
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In other words, up to the factor  
2 2

2exp 1
16

 




 
    

,     (16) 

the components of the Poynting vector turn out to be very similar to those of the monochromatic 
Gaussian beam [3]. 

As a result, the longitudinal components of the angular momentum densities and the angular 
momenta differ by the same factor. The magnitude of this factor determined by the width of the 
spectral range and the mean radiation frequency is such that it induces some decrease in the angu-
lar momentum value, when compared with the coherent case. Hence, the magnitude of the angular 
momentum of the quasi-monochromatic Gaussian beam is strongly linked to the wave coherence. 

4. Discussion 
Let us estimate the decrease in the angular momentum value mentioned above. It is known [15] 
that the indeterminancy principle for the wave processes acquires the following form: 

0 1  ,      (17) 
where 0  denotes the coherence time. In the quasi-monochromatic approximation, this parameter 
is significantly less than the period of the wave vibration 0T , 

0T
c


 ,      (18) 

where   is the central wavelength from the spectral range under interest. In other words, we have 
0 0~ aT ,      (19) 

where the coefficient a  is large enough. One can easily show that ~ 1/ a



. In much the same 

way, one can obtain the relation 

~ 1/ a

       (20) 

now formulated in terms of  . 
Now let us assume the a  value to be close to 10. In this case the spectral radiation range   

is close to 60–70 nm  for the ‘red’ visible light. This range is inherent to, e.g., light passing though 
interference filters and, moreover, it is close to that typical for conventional light-emitting diodes. 
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As follows from Eq. (16), the exponent determining the   parameter is very small (~ 0.001). 
Therefore the angular momentum value is practically the same as for the coherent case. The situa-
tion remains much the same even for a = 2. It is worthwhile to notice that such small a values are 
on the verge of any physical sense. Nevertheless, a formally calculated ‘decreasing coefficient’ is 
still as large as 0.975. In other words, the values of the angular momentum for the quasi-
monochromatic Gaussian waves are practically independent of their spectral range. 

5. Conclusions 
As a result of our present study, we are able to state the following. 

1. The behaviour of the transverse Poynting vector component for the quasi-monochromatic 
case may be defined quite similarly to the coherent case. This is why the total angular momentum 
of the polychromatic wave can be separated into its orbital and spin parts. This statement is true at 
least for the waves which meet requirements of the paraxial approximation. 

2. The value of the spin angular momentum for the quasi-monochromatic wave may be asso-
ciated with the coherence characteristics of the beam. It is defined only by spatial changes in the 
4th Stokes parameter. 

3. The value of the angular momentum for the quasi-monochromatic Gaussian beam remains 
practically independent of its spectral range. 
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Анотація. Отримані співвідношення для компонент вектора Пойнтинга для квазі моно-
хроматичної хвилі. Показано, що поведінка поперечної компоненти вектора Пойнтинга є 
подібною до поведінки у випадку когерентних хвиль. Загальний кутовий момент квазі моно-
хроматичної хвилі може бути розділеним на орбітальний і спіновий моменти. Використо-
вуючи приклад гаусівського променя ми показали, що спіновий кутовий момент асоціюєть-
ся з когерентними характеристиками оптичного променя. 


