Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
About the estimation of degree of coherence for circularly polarized waves
1Zenkova C.Yu., 2Gorsky M.P., 2Gorodynska N.V.

1Optics and Spectroscopy Department, Chernivtsi National University, 2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine
2Department of Correlation Optics, Chernivtsi National University, 2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine 

download full version

In this work we propose a technique of field polarisation modulation for determining degree of coherence for the circularly polarised waves. The processes of three-wave interaction are studied in connection with the problems of applied polarisation holography and, in particular, polarisation-sensitive diffraction gratings. We also demonstrate an important part of the reference circularly polarised wave in transformation of spatial polarisation distribution into a depth of visibility modulation of the resulting distribution, which can be metrologically estimated and analysed.

Keywords: polarisation, degree of coherence, state of polarisation, polarisation grating

PACS: 42.25.Kb, 42.25.Hz
UDC: 535.41
Ukr. J. Phys. Opt. 11 127-137   doi: 10.3116/16091833/11/3/127/2010
Received: 05.03.2010
After revision: 15.05.2010
 

Анотація. У даній роботі нами запропоновано метод модуляції поляризаційного поля для визначення ступеня когерентності циркулярно поляризованих хвиль. Досліджено процес трьох-хвильової взаємодії стосовно прикладної поляризаційної голографії і, зокрема, поляризаційно чутливих дифракційних граток. Продемонстровано важливу участь предметної циркулярно поляризованої хвилі у перетворенні просторового розподілу поляризації в глибину видимості модуляції результуючого розподілу, який може бути метрологічно оціненим і проаналізованим

REFERENCES
  1. Setala T, Tervo J and Friberg A T, 2006. Stokes parameters and polarization contrasts in Young’s interference experiment. Opt. Lett. 31: 2208–2210. doi:10.1364/OL.31.002208
  2. Setala T, Tervo J and Friberg A.T, 2006. Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence. Opt. Lett. 31: 2669–2671. doi:10.1364/OL.31.002669
  3. Angelsky O V, Dominikov N N and Maksimyak P P and Tudor T, 1999. Experimen-tal revealing of polarization waves. Appl. Opt. 38: 3112–3117. doi:10.1364/AO.38.003112PMid:18319899
  4. Angelsky O V, Yermolenko S B, Zenkova C Yu and Angelskaya A O, 2008. On po-larization manifestations of correlation (intrinsic coherence) of optical fields. Appl. Opt. 47: 5492–5499. PMid:18846192
  5. Angelsky O V, Zenkova C Yu, Gorsky M P and Gorodyns’ka N V, 2009. On the fea-sibility for estimating the degree of coherence of waves at near field. Appl. Opt. 48: 2784–2788. doi:10.1364/AO.48.002784PMid:19458725
  6. Angelsky O V, Hanson S G, Zenkova C Yu, Gorsky M P and Gorodyns’ka N V, 2009. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express. 17: 15623–15634.doi:10.1364/OE.17.015623 PMid:19724561
  7. Angelsky O V, Besaha R N and Mokhun I I, 1997. Appearance of wave front disloca-tions under interference among beams with simple wave fronts, Optica Applicata. XXVII: 273–278. 
  8. Gori F 1999. Measuring Stokes parameters by means of a polarization grating, Opt. Lett. 24: 584–586. doi:10.1364/OL.24.000584PMid:18073790
  9. Cipparrone G, Mazzulla A, Palto S P, Yudin S G and Blinov L M, 2000. Permanent polarization gratings in photosensitive Langmuir–Blodgett films. Appl. Phys. Lett. 77: 2106–2108 doi:10.1063/1.1308056
  10. Rochon P, Drnoyan V and Natansohn A, 1998. Polarization holographic gratings in azopolymers and producing circularly polarized light, Proc. SPIE. 3491: 306–309. doi:10.1117/12.328745
  11. Lagugne-Labarthet F, Rochon P and Natansohn A, 1999 Polarization Analyses of Diffracted Orders from a Birefringence Grating Recorded on Azobenzene Containing Polymer. Appl. Phys. Lett. 75: 1377–1379. doi:10.1063/1.124699
  12. Cloutier S G, Peyrot D A, Galstian T V and Lessard R A, 2002. Measurement of per-manent vectorial photoinduced anisotropy in azo-dye-doped photoresist using po-larization holography. J. Opt. A: Pure Appl. Opt. 4: S228–S234. doi:10.1088/1464-4258/4/6/358
  13. Holme N C R, Nikolova L, Ramanujam P S and Hvilsted S, 1997. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline absobenzene poly-ester. Appl. Phys. Lett. 70: 1518–1520. doi:10.1063/1.118605
  14. Nikolova L, Petrova T, Ivanov M, Todorov T and Nacheva E, 1992. Polarization holographic gratings. Diffraction efficiency of amplitude-phase gratings and their re-alization in AgCl emulsions. J. Mod. Opt. 39: 1953–1963. doi:10.1080/09500349214552011
  15. Nikolova L, Todorov T, Ivanov M, Andruzzi F, Hvilsted S and Ramanujam P S, 1996. Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy, Appl. Opt. 35: 3835–3840. doi:10.1364/AO.35.003835
  16. Ciuchi F, Mazzulla A and Cipparrone G, 2002. Permanent polarization gratings in elastomer azo-dye systems: comparison of layered and mixed samples, J. Opt. Soc. Amer. B. 19: 2531–2537. doi:10.1364/JOSAB.19.002531
  17. Ono H, Emoto A, Takahashi F, Kawatsuki N and Hasegawa T, 2003. Highly stable polarization gratings in photocrosslinkable polymer liquid crystals, J. Appl. Phys. 94: 1298–1303. doi:10.1063/1.1587269
  18. Cloutier S G, 2005. Polarization holography: orthogonal plane-polarized beam con-figuration with circular vectorial photoinduced anisotropy. J. Phys. D: Appl. Phys. 38: 3371–3375. doi:10.1088/0022-3727/38/18/007
  19. Emoto A, Ono H, Kawatsuki N, Uchida E and Kuwabara M, 2006. Polarization con-version in polarization holographic gratings formed in photocrosslinkable polymer liquid crystals. AZojomo. 2: 10 p. 
  20. Tervo J, Setala T and Friberg A T, 2003. Degree of coherence for electromagnetic fields. Opt. Express. 11: 1137–1143. doi:10.1364/OE.11.001137PMid:19465979
(c) Ukrainian Journal of Physical Optics