Home
page
Other articles
in this issue |
Plasma effect on propagation of filamented femtosecond
laser pulse in fused silica
1Blonskyi I., 1Kadan
V., 2Shpotyuk O., 1Pavlov I.
1Department of
Photonic Processes, Institute of Physics NAS of Ukraine, 46 Prospekt Nauky,
03028 Kyiv, Ukraine
2Scientific Research
Company “Carat”, 202 Stryiska St., 79031 Lviv, Ukraine
download full version
Propagation of filamented femtosecond laser pulses in fused silica is
studied us-ing microscopic techniques of time-resolved femtosecond optical
polarigraphy and transient absorption. Basing on the value of induced absorbance
measured at the trailing edge of propagating pulse, it is concluded that
the filament is refilled by energy flux from a reservoir. Light energy
and plasma density in the filament core, along with the corresponding changes
in refraction index, are estimated. Reshaping of the laser pulse caused
by expulsion of light from the plasma-occupied area is directly observed.
Transformation of axially symmetric shape of the pulse into asymmetric
Z-like one is also found.
Keywords: femtosecond laser pulses, Kerr effect,
filaments, plasma, fused silica
PACS: 42.65.Re, 42.65.Jx, 52.38.Dx; UDC:535.542
Ukr. J. Phys. Opt.
10 100-108
doi: 10.3116/16091833/10/2/100/2009
Received: 17.03.2009
Анотація. Розповсюдження філаментованих
фемтосекундних лазерних імпульсів в плавленому
кварці вивчалося із застосуванням мікроскопічних
методик фемтосе-кундної часороздільної
оптичної полярографії і індукованого поглинання.
Виходячи з величини наведеного поглинання,
виміряного на хвостовій частині імпульсу
зроб-лено висновок про наявність потоку
енергії з резервуару в ядро філаменту.
Зроблено оцінку енергії світла і густини
плазми в ядрі філаменту. Прямо зареєстровано
зміну форми лазерного імпульсу внаслідок
виштовхування світла з області, зайнятою
плазмою. Також зареєстровано перехід початкової
форми імпульсу з осьовою симетрією в асиметричну
Z-подібну форму. |
|
REFERENCES
-
Kudriašov V, Gaižauskas E and Sirutkaitis V, 2005. Beam transformation
and perma-nent modi-fication in fused silica induced by femtosecond filaments.
J. Opt. Soc. Am. B. 22: 2619–2627. doi:10.1364/JOSAB.22.002619
-
Couairon A and Mysyrowicz A, 2007. Femtosecond filamentation in transparent
media. Phys. Rep. 441: 47–189. doi:10.1016/j.physrep.2006.12.005
-
Braun A, Korn G, Liu X, Du D, Squier J and Mourou G, 1995. Self-channeling
of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20: 73–75.
doi:10.1364/OL.20.000073
-
Brodeur A, Chien C Y, Ilkov F A, Chin S L, Kosareva O G and Kandidov V
P, 1997. Moving focus in the propagation of ultrashort laser pulses in
air. Opt. Lett. 22: 304–306. doi:10.1364/OL.22.000304
PMid:18183183
-
Dubeitis A, Gaižauskas E, Tamošauskas G and Di Trapani P, 2004. Light
filaments without self-channeling. Phys. Rev. Lett. 92: 253903–4. doi:
10.1103/PhysRevLett.92.253903
-
Kolesik M, Wright E M and Moloney J L, 2004. Dynamic nonlinear X-waves
for femto-second pulse propagation in water. Phys. Rev. Lett. 92: 253901–
4. doi: 10.1103/PhysRevLett.92.253901
-
Blonskyi I, Kadan V, Shpotyuk O and Dmitruk I, 2009. Opt. Commun. 1913–1917
(at press) doi:
10.1016/j.optcom.2009.01.056
-
Mechain G, D’Amico C, Andre Y-B,Tzortzakis S, Franko M, Prade B, Mysyrowicz
A, Couai-ron A, Salmon E and Sauerbrey R, 2005. Length of plasma filaments
created in air by a multiter-awatt femtosecond laser. Opt. Commun. 247:
171–180. doi:10.1016/j.optcom.2004.11.052
-
Ishikawa K, Kumagai H and Midorikawa K, 2002. High-power regime of femtosecond-laser
pulse propagation in fused silica: Multiple cone formation. Phys. Rev.
E. 66: 056608–8. doi:
10.1103/PhysRevE.66.056608
-
Liu Y, Jiang H and Gong Q, 2006. Spatiotemporal transformation of a focused
femto-second pulse in the absence of self-focusing. Opt. Lett. 31: 832–834.
doi:10.1364/OL.31.000832
PMid:16544639
-
Polesana P, Franco M, Couairon A, Faccio D and Di Trapani P, 2008. Filamentation
in Kerr media from pulsed Bessel beams. Phys. Rev. A. 77: 043814-1–11.
doi:
10.1103/PhysRevA.77.043814
-
Faccio D, Matijosius A, Dubeitis A, Piskarskas R, Varanavičius A, Gaizauskas
E, Pis-karskas A, Couairon A and Di Trapani P, 2005. Near- and far-field
evolution of laser pulse filaments in Kerr media. Phys. Rev. E. 72: 037601-1–4.
doi:
10.1103/PhysRevE.72.037601
-
Kumagai H, Cho S-H, Ishikawa K, Midorikawa K, Fujimoto M, Aoshima S and
Tsu-chiya Y, 2003. Observation of the complex propagation of a femtosecond
laser pulse in a dispersive trans-parent bulk material. J. Opt. Soc. Am.
B. 20: 597–602. doi:10.1364/JOSAB.20.000597
-
Takeda J, Nakajima K, Kurita S, Tomimoto S, Saito S and Suemoto T, 2000.
Time-resolved luminescence spectroscopy by the optical Kerr-gate method
applicable to ul-trafast relaxation processes. Phys. Rev. B. 62: 10083–10087.
doi:10.1103/PhysRevB.62.10083
-
Fujimoto M, Aoshima S, Hosoda M and Tsuchiya Y, 2001. Analysis of instantaneous
profiles of intense femtosecond optical pulses propagating in helium gas
measured by using femtosecond time-resolved optical polarigraphy. Phys.
Rev. A. 64: 033813–11. doi:10.1103/PhysRevA.64.033813
-
Zergioti I, Kyrkis K D, Papazoglou D G and Tzortzakis S, 2007. Structural
modifica-tions in fused silica induced by ultraviolet fs laser filaments.
Appl. Surf. Sci. 253: 7865–7868. doi:10.1016/j.apsusc.2007.02.095
-
Couairon A, Sudrie L, Franco M, Prade B and Mysyrowicz A, 2005. Filamentation
and dam-age in fused silica induced by tightly focused femtosecond laser
pulses. Phys. Rev. B. 71: 125435-1–11. doi:
10.1103/PhysRevB.71.125435
(c) Ukrainian Journal
of Physical Optics |