Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Plasma effect on propagation of filamented femtosecond laser pulse in fused silica
1Blonskyi I., 1Kadan V., 2Shpotyuk O., 1Pavlov I.

1Department of Photonic Processes, Institute of Physics NAS of Ukraine, 46 Prospekt Nauky, 03028 Kyiv, Ukraine
2Scientific Research Company “Carat”, 202 Stryiska St., 79031 Lviv, Ukraine

download full version

Propagation of filamented femtosecond laser pulses in fused silica is studied us-ing microscopic techniques of time-resolved femtosecond optical polarigraphy and transient absorption. Basing on the value of induced absorbance measured at the trailing edge of propagating pulse, it is concluded that the filament is refilled by energy flux from a reservoir. Light energy and plasma density in the filament core, along with the corresponding changes in refraction index, are estimated. Reshaping of the laser pulse caused by expulsion of light from the plasma-occupied area is directly observed. Transformation of axially symmetric shape of the pulse into asymmetric Z-like one is also found.

Keywords: femtosecond laser pulses, Kerr effect, filaments, plasma, fused silica

PACS:  42.65.Re, 42.65.Jx, 52.38.Dx; UDC:535.542
Ukr. J. Phys. Opt. 10 100-108 
doi: 10.3116/16091833/10/2/100/2009

Received: 17.03.2009

Анотація. Розповсюдження філаментованих фемтосекундних лазерних імпульсів в плавленому кварці вивчалося із застосуванням мікроскопічних методик фемтосе-кундної часороздільної оптичної полярографії і індукованого поглинання. Виходячи з величини наведеного поглинання, виміряного на хвостовій частині імпульсу зроб-лено висновок про наявність потоку енергії з резервуару в ядро філаменту. Зроблено оцінку енергії світла і густини плазми в ядрі філаменту. Прямо зареєстровано зміну форми лазерного імпульсу внаслідок виштовхування світла з області, зайнятою плазмою. Також зареєстровано перехід початкової форми імпульсу з осьовою симетрією в асиметричну Z-подібну форму.

REFERENCES
  1. Kudriašov V, Gaižauskas E and Sirutkaitis V, 2005. Beam transformation and perma-nent modi-fication in fused silica induced by femtosecond filaments. J. Opt. Soc. Am. B. 22: 2619–2627. doi:10.1364/JOSAB.22.002619
  2. Couairon A and Mysyrowicz A, 2007. Femtosecond filamentation in transparent media. Phys. Rep. 441: 47–189. doi:10.1016/j.physrep.2006.12.005
  3. Braun A, Korn G, Liu X, Du D, Squier J and Mourou G, 1995. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20: 73–75. doi:10.1364/OL.20.000073
  4. Brodeur A, Chien C Y, Ilkov F A, Chin S L, Kosareva O G and Kandidov V P, 1997. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22: 304–306. doi:10.1364/OL.22.000304 PMid:18183183
  5. Dubeitis A, Gaižauskas E, Tamošauskas G and Di Trapani P, 2004. Light filaments without self-channeling. Phys. Rev. Lett. 92: 253903–4. doi: 10.1103/PhysRevLett.92.253903
  6. Kolesik M, Wright E M and Moloney J L, 2004. Dynamic nonlinear X-waves for femto-second pulse propagation in water. Phys. Rev. Lett. 92: 253901– 4. doi: 10.1103/PhysRevLett.92.253901
  7. Blonskyi I, Kadan V, Shpotyuk O and Dmitruk I, 2009. Opt. Commun. 1913–1917 (at press) doi: 10.1016/j.optcom.2009.01.056
  8. Mechain G, D’Amico C, Andre Y-B,Tzortzakis S, Franko M, Prade B, Mysyrowicz A, Couai-ron A, Salmon E and Sauerbrey R, 2005. Length of plasma filaments created in air by a multiter-awatt femtosecond laser. Opt. Commun. 247: 171–180. doi:10.1016/j.optcom.2004.11.052
  9. Ishikawa K, Kumagai H and Midorikawa K, 2002. High-power regime of femtosecond-laser pulse propagation in fused silica: Multiple cone formation. Phys. Rev. E. 66: 056608–8.   doi: 10.1103/PhysRevE.66.056608
  10. Liu Y, Jiang H and Gong Q, 2006. Spatiotemporal transformation of a focused femto-second pulse in the absence of self-focusing. Opt. Lett. 31: 832–834. doi:10.1364/OL.31.000832 PMid:16544639
  11. Polesana P, Franco M, Couairon A, Faccio D and Di Trapani P, 2008. Filamentation in Kerr media from pulsed Bessel beams. Phys. Rev. A. 77: 043814-1–11. doi: 10.1103/PhysRevA.77.043814
  12. Faccio D, Matijosius A, Dubeitis A, Piskarskas R, Varanavičius A, Gaizauskas E, Pis-karskas A, Couairon A and Di Trapani P, 2005. Near- and far-field evolution of laser pulse filaments in Kerr media. Phys. Rev. E. 72: 037601-1–4. doi: 10.1103/PhysRevE.72.037601
  13. Kumagai H, Cho S-H, Ishikawa K, Midorikawa K, Fujimoto M, Aoshima S and Tsu-chiya Y, 2003. Observation of the complex propagation of a femtosecond laser pulse in a dispersive trans-parent bulk material. J. Opt. Soc. Am. B. 20: 597–602. doi:10.1364/JOSAB.20.000597
  14. Takeda J, Nakajima K, Kurita S, Tomimoto S, Saito S and Suemoto T, 2000. Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ul-trafast relaxation processes. Phys. Rev. B. 62: 10083–10087. doi:10.1103/PhysRevB.62.10083
  15. Fujimoto M, Aoshima S, Hosoda M and Tsuchiya Y, 2001. Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy. Phys. Rev. A. 64: 033813–11. doi:10.1103/PhysRevA.64.033813
  16. Zergioti I, Kyrkis K D, Papazoglou D G and Tzortzakis S, 2007. Structural modifica-tions in fused silica induced by ultraviolet fs laser filaments. Appl. Surf. Sci. 253: 7865–7868. doi:10.1016/j.apsusc.2007.02.095
  17. Couairon A, Sudrie L, Franco M, Prade B and Mysyrowicz A, 2005. Filamentation and dam-age in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B. 71: 125435-1–11. doi: 10.1103/PhysRevB.71.125435
(c) Ukrainian Journal of Physical Optics