Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Light propagation in layered photonic crystals with admixture layers
Rumyantsev V.V., Fedorov S.A., Gumennyk K.V.

A.A. Galkin Donetsk Physico-Technical Institute of NASU, 72 R. Luxembourg St., 83114 Donetsk, Ukraine

download full version

The virtual-crystal approximation is used for numerical simulation of a polariton spectrum transformation in composite materials, consisting of alternating silicon and liquid crystal layers and randomly included admixture layers. The character of dependence of the bandgap width and the refractive index upon the concentra-tion of admixture layers is discussed. It is shown that the energy structure of this imperfect superlattice can be significantly altered by implantation of appropriate defect layers.

Keywords: photonic crystal, Si - liquid crystal system, admixture layer, bandgap width.

PACS: 78.55.Et
UDC:  535.37
Ukr. J. Phys. Opt. 9 97-104 
doi: 10.3116/16091833/9/2/97/2008
Received: 29.01.2008

REFERENCES
  1. Lourtioz J-M, Benisty H, Berger V, Gerard J-M, Maystre D and Tchelnokov A. Photonic Crystals: Towards Nanoscale Photonic Devices. New York: Springer (2005). 
  2. Belotelov V I, Kotov V A, Zvezdin A K, Alameh K and Vasiliev M V. Optical prop-erties of the magnetic crystals at the oblique light incidence. V. Vernadsky Taurida National University. Proc. of International Conference “Functional Materials” (2005) p. 132. 
  3. Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M L, Shapovalov E A, Lakhtakia A and Rasing Th, 2004. One-dimensional bigyrotropic magnetic photonic crystals. Appl. Phys. Lett. 85: 5932–5934.       doi:10.1063/1.1825060
  4. Nau D, Schonhardt A, Chigrin D N, Kroha H, Christ A and Giessen H, 2007. Polari-ton bandstructure of disordered metallic photonic crystal slabs. Phys. Stat. Solidi (b). 244: 1262–1269.       doi:10.1002/pssb.200774516
  5. Rumyantsev V V and Fedorov S A, 2007. Polariton spectrum of imperfect lyotropic lamellar system. Liquid Crystals and Their Application. 1(19): 67–74. 
  6. Pokatilov E P, Fomin V M and Beril S I. Vibrational Excitations, Polarons, and Exci-tons in Multilayer Systems and Superlattices. Chisinau: Shtiintsa (1990). 
  7. Yariv A and Yeh P. Optical waves in crystals. New York: John Willey & Sons, Inc. (1987). 
  8. Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M L, Shapovalov E A, Lee Y P and Rasing Th. Light propagation in magnetic photinic crystals: oblique incidence. V. Vernadsky Taurida National University. International Conference “Functional Mate-rials”. Proceedings (2005) p. 133. 
  9. Parmenter R H, 1955. Energy Levels of a Disordered Alloy. Phys. Rev. 97: 587–698.       doi:10.1103/PhysRev.97.587
  10. Dargan T G, Capaz R B and Koiler Belita, 1997. Critical Analysis of the Virtual Crystal Approximation. Brazilian J. Phys. 27/A: 299–304. 
  11. Ziman J M. Models of disorder. The theoretical physics of homogeneously disordered systems. New York: John Willey & Sons, Inc. (1979). 
  12. Mezrag F, Aouina N Y and Bouarissa N, 2006. Optoelectronic and dielectric proper-ties of GaAs x Sb1- x ternary alloys. J. Mater. Sci. 41: 5323–5328.       doi:10.1007/s10853-006-0314-2

  13. Los’ V F, 1987. Projection operator method in the theory of disordered systems. 1. Spectra of quasiparticles. Theor. and Math. Phys. 73: 85–102.
(c) Ukrainian Journal of Physical Optics