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Abstract 

The virtual-crystal approximation is used for numerical simulation of a polariton 
spectrum transformation in composite materials, consisting of alternating silicon 
and liquid crystal layers and randomly included admixture layers. The character 
of dependence of the bandgap width and the refractive index upon the concentra-
tion of admixture layers is discussed. It is shown that the energy structure of this 
imperfect superlattice can be significantly altered by implantation of appropriate 
defect layers. 
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1. Introduction 

Propagation of electromagnetic waves in thin films and layered crystalline media is cur-
rently drawing a close attention of researchers. The works [1–4] give the account of the 
related researches carried out for photonic crystals and [5] – for some composite materials 
based on silicon and liquid crystals. On the one hand, the interest towards these objects is 
due to their significance for electronics. On the other hand, this is because a notable ad-
vance of technology that allows growing of ultra-thin films and periodic structures with 
controlled characteristics. 

There have been numerous theoretical and experimental studies (see, e.g., [6] and 
references therein) on exciton-like excitations in ideal dielectric superlattices. A general 
theory of optical waves in anisotropic crystals, including those formed of macroscopic 
layers, has been discussed in Ref. [7]. The authors [8] have investigated dispersion of po-
laritons in a superlattice with two admixture layers. At the same time, a considerable in-
terest has been focused on non-ideal superlattices with an arbitrary number of admixture 
layers, as well as on dependence of polariton spectrum on the concentration of corre-
sponding defects. Further development of the theory of layered structures evidently re-
quires considering more complex models like superlattices with randomly included ad-
mixture layers of variable composition. A better understanding of how the optical proper-
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ties of such the systems depend on the concentration of admixture layers would give a 
basis for modelling and constructing the layered materials with predetermined character-
istics. 

The method applied for calculating the polariton excitation spectra is rather similar 
to those used in cases of other quasi-particle excitations, like electronic, phononic etc. In 
the present work we employ the virtual-crystal approximation (VCA) [9, 10], based on 
configurational averaging, for description of polariton excitations in a macroscopically 
inhomogeneous medium. In general, it is a well-known method, though its utilization has 
been limited up to now to microscopic calculations of the quasiparticle excitation spectra 
in disordered systems [11]. Nonetheless, mathematical posing of the problem is similar in 
these two cases. 

The VCA proposed originally by L. Nordheim and R. H. Parmenter [9] consists in 
replacing the exact one-electron potential (appropriate to a given configuration of atoms 
of the alloy) by its average taken over all of possible random configurations. This ap-
proximation is widely used in the studies for different disordered structures. For example, 
based on the pseudopotential scheme under the VCA, in which the effect of composi-
tional disorder is involved, the authors [12] have studied the dependence of optoelectronic 
properties of GaAsxSb1-x on the alloy composition x. Within this approximation con-
figurationally dependent parameters of Hamiltonian are replaced with their configuration-
ally averaged values. Description of transformation of polariton spectrum in a sufficiently 
simple superlattice with the aid of VCA is the first step towards the study of imperfect 
systems. However, investigation of properties of the polariton spectra and the related 
physical quantities (density of elementary excitation states, characteristics of normal elec-
tromagnetic waves etc.) of less simple systems requires application of more complex 
methods. These are the method of coherent (one- or many-site) potential [11], the aver-
aged Т-matrix method [13] and their numerous modifications used for various particular 
problems. 

In this work we model superlattices as a set of macroscopically homogeneous layers 
with randomly included extrinsic (with respect to the ideal superlattice) layers. The corre-
sponding configuration-dependent material tensors in our model of imperfect superlattice 
are represented in terms of random quantities. After configurational averaging the transla-
tional symmetry of the system under consideration is “restored”, thus allowing us to ob-
tain the system of equations that defines the normal modes of electromagnetic waves 
propagating in one-dimensional “periodic” medium. Within the VCA we study the pecu-
liarities of dependence of the bandgap width and the refractive index upon the concentra-
tion of admixture layers for the non-ideal system ‘Si – liquid crystal’. 

2. Propagation of electromagnetic waves in inhomogeneous structures 

The dielectric ( ( )ˆ rε �

) and magnetic ( ( )ˆ rµ �

) permeabilities, which determine optical 

characteristics of a periodic medium, should satisfy periodic boundary conditions: 
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( ) ( )ˆ ˆ, , , ,x y z x y z dε ε= +    ( ) ( )ˆ ˆ, , , ,x y z x y z dµ µ= + ,    (1) 

 

where ∑
=

=
σ

1j
jad  is the period of our superlattice, σ the number of layers per elementary 

cell and 
ja  thicknesses of the layers that form one-dimensional chain of elements ori-

ented along z axis. The material tensors ε̂  and µ̂  of a crystalline superlattice with an ar-

bitrary number of layers σ have the following form in the coordinate representation: 
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In Eq. (2) ( )zθ  denotes the Heaviside function, 1, 2, ...n = ± ±  the number of one-

dimensional crystal cells and the index 1, 2, ...,α σ=  labels elements of the cell. Below we 

consider an imperfect system, in which disordering is linked with variation of composi-

tion of the admixture layers rather than their thickness, so that αα aan ≡ . Within our 

model, configurationally dependent tensors αα µε nn ˆ,ˆ  are expressed through the random 

quantities ν
αηn

 ( ν
αηn  = 1 if the ( )ν α th sort of layer is in the ( )nα th site of crystalline chain, 

otherwise we have ν
αηn  = 0): 
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Similarly to the solid quasi-particle approach, calculation of the polariton spectrum 
for the imperfect superlattice within the VCA is implemented through the replacement 

µµεε ˆˆ,ˆˆ →→ , where angular parentheses mean a procedure of configurational aver-

aging. In addition, from Eq. (3) and Ref. [9] we have the relation 
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where ( )αν
αC  is the concentration of ( )αν th sort of admixture layer in the α th sublattice. 

Here a simple normalization condition ( )

( )
∑ =
αν

αν
α 1C  holds true. It follows from Eq. (2) 

that the Fourier-amplitudes ll µε ˆ,ˆ  and the averaged dielectric ( αε nˆ ) and magnetic 

( αµnˆ ) permeabilities of layers given by Eqs. (4) are related as 
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Since the configurational averaging “restores“ translational symmetry of a crystalline 
system, the “acquired” translational invariance of our one-dimensional chain in the con-
sidered case of imperfect superlattice allows us to represent Maxwell equations in the 
form 

( ) ( ) ( ) ( ) ( ) ( )ˆˆ, , , , ,
i i

E r z H r H r z E r
c c

ω ωω µ ω ω ε ω∇× = ⋅ ∇× = − ⋅
� � � �

� � � � ,  (6) 

where harmonic time dependences of the electric and magnetic fields ( ) ( )ωω ,,, rHrE
�

�

�

�

 

are assumed. 

According to the Floquet theorem, Fourier amplitudes ),(
,

HE
pKf

�

 of the electric and 

magnetic fields satisfy the following relation: 
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Here β
�

 is an arbitrary planar (i.e., lying in the XOY plane) wave vector, ze
�

 a unit 

vector along the z axis and ),0,0( KK =
�

 the Bloch vector. The system (7) defines the 

normal modes of electromagnetic waves that propagate in the “periodic” medium under 
analysis.  

For simplicity, below we restrict our study to the case of light propagation along the 

z axis ( 0=β
�

) in a nonmagnetic lattice (with Îˆ =µ  being a unit matrix). Like in Ref. [5], 

we treat the liquid-crystal layers as optically uniaxial 

( jzzizzjyyiyyjxxixxij δδεδδεδδεε ++= ). It is obvious that zz-components of the tensor ε̂  

will not appear in the final formulae for the case of zK ||
�

 and, moreover, we have 

εεε ≡= yyxx . The same as in Ref. [7], we assume further that K  is close to the value 

defined by the Bragg condition, i.e. K
d

K ≈− π2
 and 0

222 εω≈Kc . This case corre-

sponds to a resonance of plane waves between the components ),(
,

HE
pKf

�

 at 0, 1p = −  

(these terms dominate in the system of Eqs. (7)). After eliminating the ( )Hf
�

 variables, we 

rewrite Eqs. (7) with respect to ( )Ef
�

 as follows: 
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where ( ) ( )1
1

0
0 , ±

±== ≡≡ εεεε ll . Putting determinant of the system of Eqs. (8) to be zero, 
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we obtain the dispersion relations ( )Kωω =± . Two roots ±ω  of this equation define the 

boundaries of the spectral band: the roots become complex at the frequencies 

( ) ( )KK +− << ωωω  (the bandgap) and the electromagnetic waves decay (the Bragg 

reflection). The frequencies +− >< ωωωω ,  correspond to propagating waves.  

3. Results and discussion 

Let us confine ourselves to the case of propagation of electromagnetic radiation in a 
nonmagnetic superlattice with two constituent layers, a Si-layer and a liquid-crystal layer, 
per elementary cell. The concentration and the dielectric permeability of the basic mate-

rial in the first and second sublattices are denoted respectively as ( ) ( )1
1

1
1 , εC  and ( ) ( )1 1

2 2,C ε , 

with (1)
1 11.7ε =  and (1)

2 5.5ε = . For the admixture these quantities are denoted as ( )2
1

)2(
1 , εC  

and ( ) ( )2
2

2
2 , εC . Simple transformations with account for the property ( ) ( )11 εε =−  lead to 

the following relations for the refractive index ω/cKn ≡  of the system under study: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( )2 2

1 1 22 2 0 2 2 1 2 2 02
1 2 1 2 1 2
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ω±

 ∆
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 
 

,   (9) 

where ( )02 2
1( ) / 2 /n n ε ω ω+ −− ≅ ∆  and −+ −=∆ ωωω1  is the width of the lowest bandgap. 

It follows from Eq. (9) that the quantity 1ω∆  is determined by the corresponding coeffi-

cient of the Fourier expansion given by Eq. (5), which in this case is ( )1ε . In Refs. [5, 7] 

it has been shown that the bandgaps of higher orders are also determined by the corre-
sponding Fourier coefficients of the dielectric permeability: 
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 de-

pend on the concentration of admixture layers and their relative dielectric permeability. 

 Fig. 1 shows the concentration dependence of the refractive index ±± ≡ ω/cKn  

of the composite superlattice. It is readily seen that the form of the corresponding surfaces 
has a non-monotone character if the dielectric permeability of both admixtures is 

( ) ( ) ( )2 1/ 1 1,2i i iε ε =�  (the case (a)) or ( ) ( ) ( )2 1/ 1 1,2i i iε ε =� . The dependences of n+  and 

n−  on ( )2
1C  and ( )2

2C  become monotonous in the case (b). The latter fact determines the 

behaviour of the lowest bandgap. 
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a      b 

Fig. 1. Refractive index ±± ≡ ω/cKn  of the composite superlattice  
comprising alternating silicon and liquid-crystal layers vs. concentrations  
of the admixture layers (under the condition 1 2/ 1a a = ): (a) ( ) ( )2 1

1 1/ 0.1ε ε =   

and ( ) ( )2 1
2 2/ 0.2ε ε = ; (b) ( ) ( )2 1

1 1/ 20ε ε =  and ( ) ( )2 1
2 2/ 0.2ε ε = . 

 

  
a b 

Fig. 2. Relative width of the lowest bandgap 1 /ω ω∆  of the composite  
superlattice comprising the alternating silicon and liquid-crystal layers vs. 
concentrations of the admixture layers ( 1 2/ 1a a = ). Surface (a) refers the 

case of ( ) ( )2 1
1 1/ 0.1ε ε =  and ( ) ( )2 1

2 2/ 0.2ε ε =  and surface (b) the case  

of ( ) ( )2 1
1 1/ 20ε ε =  and ( ) ( )2 1

2 2/ 0.2ε ε = . 

 
In Fig. 2 the width of the lowest energy gap is plotted versus the concentrations (2)

1 ,C  
( )2
2C  of the admixture layers for the superlattice with alternating silicon and liquid-crystal 

layers. The energy gap 1ω∆  vanishes at ( ) ( )1 1
1 1 2 2f fε ε=  for the case (a) depicted in Fig. 2.  
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4. Conclusion 

Our results show that the optical characteristics of imperfect superlattices may be signifi-
cantly altered owing to transformation of their polariton spectrum resulted from a pres-
ence of admixture layers. The theory developed is a basis for phenomenological descrip-
tion of a wide class of optical processes in non-ideal multilayered systems. Eqs. (2)–(5) 
and (7) allow numerical calculation of the concentration dependence of relevant optical 
characteristics. The essential quantities governing the propagation of electromagnetic 
waves through the media under consideration are the refractive indices, the photon gap 
width and the quantities defined by them, which can be measured directly (e.g., the light 
transmission coefficient). Graphic representation of the dependences 

( ) ( )( )2
2

2
1 ,/, CCn ωω∆±  (see Fig. 1 and 2) proves that character of the concentration de-

pendence for the binary systems considered above differs for different concentration in-
tervals. The case of non-ideal multilayered systems with a larger number of sublattices 
and components of alien layers (see [5]) supposes even a wider variety of specific behav-
iours of the refractive index and the gap width. This circumstance extends considerably 
the promises of modelling composite materials with predetermined properties.  
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