Home
page
Other articles
in this issue |
Optical extinction
spectra of the aqueous suspensions of Ag nanoparticles
1Malynych S., 2Moroz
I., 1Kurlyak V.
1Ivan Franko
National University of Lviv, 8 Kyryla & Methodiya Str., Lviv 79005
2National
University “Lviv Polytechnic”, 12 St. Bandera Str., Lviv 79013
download full version
The experimental results on the extinction spectra of aqueous suspensions
of silver nanoparticles are presented. It is shown that optical properties
of suspensions are strongly affected by the size and shape of the particles.
Extinction spectra of monodisperse Ag colloid consist of two characteristic
bands centered at about 430 and 540 nm, which can be explained in terms
of Mie theory. These bands arise from the excitation of dipole and quadrupole
components of surface plasmon resonance respectively. Presence of rod-like
particles in colloid leads to broadening and tailing of the dipole component
of the extinction spectra.
Keywords: silver nanoparticles, extinction,
surface plasmon resonance
PACS: 73.20.Mf; 78.67.Bf
Ukr. J. Phys. Opt.
8 54-59
doi: 10.3116/16091833/8/1/54/2007
Received: 03.02.2007
|
|
REFERENCES
1. Kelly KL, Coronado E, Lin Lin Zhao and Schatz GC, 2003. The optical
properties of metal nanoparticles: the influence of size, shape, and dielectric
environment. J. Phys. Chem. 107: 668–677.
doi:10.1021/jp026731y http://dx.doi.org/10.1021/jp026731y
2. Evanoff Jr D and Chumanov G, 2004. Size-Controlled Synthesis of
Nanoparticles. 1. “Silver-Only” Aqueous Suspensions via Hydrogen Reduction.
J. Phys. Chem. B108: 13948–13956.
doi:10.1021/jp047565s http://dx.doi.org/10.1021/jp047565s
3. Barnes WL, Dereux A and Ebbesen TW, 2003. Surface plasmon subwavelength
optics. Nature. 424: 824–830.
doi:10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
4. Atwater HA, Maier S, Polman A, Dionne JA and Sweatlock L, 2005.
The new "p-n junction": plasmonics enables access to the nanoworld. MRS
Bull. 30: 385–389.
5. Hong Shen, Bolin Cheng, Guowei Lu, et al. 2006. Enhancement of optical
nonlinearity in periodic gold nanoparticle arrays. Nanotechnology. 17:
4274–4277.
doi:10.1088/0957-4484/17/16/045
http://dx.doi.org/10.1088/0957-4484/17/16/045
6. Doering WE and Nie SM, 2002. Single-molecule and single-nanoparticle
SERS: Examining the roles of surface active sites and chemical enhancement.
J. Phys. Chem. B106: 311–317.
doi:10.1021/jp011730b http://dx.doi.org/10.1021/jp011730b
7. Jensen TR, Van Duyne RP, Jonson SA and Maroni VA, 2000. Surface-enhanced
infrared spectroscopy: A comparison of metal island films with discrete
and nondiscrete surface plasmons. Appl. Spectr. 54: 371–377.
doi:10.1366/0003702001949654
http://dx.doi.org/10.1366/0003702001949654
8. Malynych S and Chumanov G, 2006. Coupled planar silver nanoparticle
arrays as refractive index sensors. J. Opt. A: Pure Appl. Opt. 8: S144–S147.
doi:10.1088/1464-4258/8/4/S14
http://dx.doi.org/10.1088/1464-4258/8/4/S14
9. Quinten M, 2001. The Color of Finely Dispersed Nanoparticles. Appl.
Phys. B73: 317–326.
doi:10.1007/s003400100666
http://dx.doi.org/10.1007/s003400100666
10. Kreibig U. and Vollmer M. Optical Properties of Metal Clusters.
Berlin, Heidelberg: Springer-Verlag (1995).
11. Sosa IO, Noguez C and Barrera RG, 2003. Optical Properties of Metal
Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B107: 6269–6275.
doi:10.1021/jp0274076 http://dx.doi.org/10.1021/jp0274076
12. Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, and Aussenegg
F R, 2003. Plasmon Dispersion Relation of Au and Ag Nanowires. Phys. Rev.
B68: 155427-1–155427-4.
doi: 10.1103/PhysRevB.68.155427
http://link.aps.org/abstract/PRB/v68/e155427
13. Luk’yanchuk BS and Ternovsky V, 2006. Light scattering by a thin
wire with a surface-plasmon resonance: Bifurcations of the Poynting vector
field. Phys. Rev. B73: 235432-1–235432-12.
doi:10.1103/PhysRevB.73.235432
http://link.aps.org/abstract/PRB/v73/e235432
(c) Ukrainian Journal
of Physical Optics |