Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical anisotropy of uniformly aligned planar surfactant lyotropic nematic doped with hemoglobin
1Omelchenko M.M., 2Boiko O.P., 2Nazarenko V.G., 1Nastishin Yu.A., 1Vlokh R.O.

1nstitute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine 
2Institute of Physics, National Academy of Sciences, 46 Nauka Ave., 03680 Kyiv

download full version

The system under study is a nematic phase of lyotropic surfactant liquid crystal, cetylpyridinium chloride/hexanol/brine. Optical birefringence measured for well-aligned surfactant nematic (surfonematic) is weakly dependent on the light wavelength within the studied spectral region (500–700 nm) and its absolute value is about 6*10-4. Doping of the surfonematic by hemoglobin (1.5% by weight) does not affect the birefringence value, suggesting that the hemoglobin does not produce its own birefringence and does not affect the scalar orienta-tional order parameter of the surfonematic matrix. The absorption coefficients of hemoglobin in the surfonematic matrix exhibit a broad band shifted several tens of nanometres towards longer wavelengths, when compare to the spectrum of hemoglobin dissolved in water. The latter indicates that the hemoglobin residues form molecular complexes with the surfactant molecules. Weak (app.2*10-2) linear dichroism of hemoglobin at the wavelengths corresponding to light absorption by oxygen bonds gives the estimation of the orientational scalar order parameter of hemoglobin molecules in well-aligned surfonematic matrix (app. 10-2)

Keywords: birefringence, dichroism, hemoglobin, surfactant nematic

PACS: 42.25.Lc, 42.70.Df, 33.55-b, 42.66-p, 36.20-r
Ukr. J. Phys. Opt. 8 31-41 
doi: 10.3116/16091833/8/1/31/2007
Received: 12.02.2007
 

REFERENCES

1. Saupe A, and Englert G, 1963. High-resolution nuclear magnetic resonance spectra of oriented molecules. Phys. Rev. Lett. 11: 462–464.
      doi:10.1103/PhysRevLett.11.462    http://dx.doi.org/10.1103/PhysRevLett.11.462
2. Bax A, 2002. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Science, 12: 1-16.
        doi:10.1110/ps.0233303  http://dx.doi.org/10.1110/ps.0233303
3. Barrientos L, Dolan C, Gronenborn A, 2000. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings NMR. Biomol. J. 16: 329–337.
        doi:10.1023/A:1008356618658  http://dx.doi.org/10.1023/A:1008356618658
4. Gaemers S, and Bax A, 2001. Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. J.Am. Chem. Soc. 123: 12343–12352.
        doi:10.1021/ja011967l  http://dx.doi.org/10.1021/ja011967l
5. Prosser R, Losonczi A, and Shiyanovskaya I,1998. Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution. J. Am. Chem. Soc. 120: 11010–11011.
        doi:10.1021/ja982671r          http://dx.doi.org/10.1021/ja982671r
6. Ruckert M, and Otting G, 2000. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122: 7793–7797.
        doi:10.1021/ja001068h         http://dx.doi.org/10.1021/ja001068h
7. Struppe J, Vold R, Magn J, 1998. Bilute bicellar solutions for structural NMR work. J. Mag. Reson. 135: 541–546.
        doi:10.1006/jmre.1998.1605  http://dx.doi.org/10.1006/jmre.1998.1605
8. Lavrentovich O, Ishikawa T, Bulk alignment of lyotropic Chromonic Liquis Crystals, US Patent No. 6, 411, 354 (2002) and 6,570,632 (2003).
9. Nastishin Yu, Liu H, Schneider T, Nazarenko V, Vasyuta R, Shiyanovskii S, and Lavrentovich O, 2005. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys.Rev. E. 72:1-14
        doi:10.1103/PhysRevE.72.041711 http://dx.doi.org/10.1103/PhysRevE.72.041711
10. Lydon J, 1998. Chromonic liquid crystal phases. In: Current opinion in colloid & interface science 3:55, 458-466, Elsevier (1998).
11. Nastishin Yu, 1996. Brine-rich corner of the phase diahram of the ternary system cetylpyridium chloride-hehanol-brine. Langmuir. 12: 5011 –5015.
        doi:10.1021/la960013j http://dx.doi.org/10.1021/la960013j
12. Nastishin Yu, Lambert E, Boltenhagen Ph, 1995. Temperature-induced structural transitions of the quasiternary system cetylpyridinium chloride-hexanol-brine. C.R.Acad.Sci.Paris. 321: 205-210.
13. Nastishin Yu, 1996. Temperature investigations of the system cetylpyridinium chlorid-hexanol-brine.Ukr. Fiz. Zhurn. 41:185-189.
14. Berret J.-F, Roux D, Porte G and Lindner P, 1994. Shear-induced isotropic-to-nematic phase transition in equilibrium polymers. Europhys. Lett. 25: 521-526
15. Nastishin Yu, Polak R, Shiyanovskii S, Bodnar V and Lavrentovich, 1999. Determination of nematic polar anchoring from retardation versus voltage measurements. J.Appl.Phys. 86: 4199-4213.
        doi:10.1063/1.371347 
16. Gennes P. and Prost J. The Physics of Liquid Crystals. Oxford: Clarenton Press (1993).
17. Barois P, Nallete F, 1994. Anomalous birefringence of swollen lamellar phases blue smectics. J.Phys.(France). 4:1049-1060.
        doi:10.1051/jp2:1994183 http://dx.doi.org/10.1051/jp2:1994183
18. Born M. and Wolf E. Principles of optics. 7th ed. Cambridge: Cambridge University Press (1999).
19. Rogers J, and Winsor P, 1967. Optically Positive, Isotropic and Negative Lamellar Liquid Crystalline Solutions. Nature 216: 477-479.
        doi:10.1038/216477a0 http://dx.doi.org/10.1038/216477a0
20. Blinov L. Electro-Optical and Magneto-Optical Properties of Liquid Crystals. New York: John Wiley & Sons Limite (1983).
21. Konstantinova A., Grechushnikov B., Bokut B., Valyashko Ye. Optical properties of crystals. Minsk: Navuka i Teknnika (1995).

(c) Ukrainian Journal of Physical Optics