Home
page
  
  
Other articles  
in this issue | 
Optical anisotropy
of uniformly aligned planar surfactant lyotropic nematic doped with hemoglobin
 1Omelchenko M.M., 2Boiko
O.P., 2Nazarenko V.G., 1Nastishin Yu.A., 1Vlokh
R.O.
1nstitute
of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine 
 2Institute
of Physics, National Academy of Sciences, 46 Nauka Ave., 03680 Kyiv
 download full version
 The system under study is a nematic phase of lyotropic surfactant liquid
crystal, cetylpyridinium chloride/hexanol/brine. Optical birefringence
measured for well-aligned surfactant nematic (surfonematic) is weakly dependent
on the light wavelength within the studied spectral region (500700 nm)
and its absolute value is about 6*10-4. Doping of the surfonematic
by hemoglobin (1.5% by weight) does not affect the birefringence value,
suggesting that the hemoglobin does not produce its own birefringence and
does not affect the scalar orienta-tional order parameter of the surfonematic
matrix. The absorption coefficients of hemoglobin in the surfonematic matrix
exhibit a broad band shifted several tens of nanometres towards longer
wavelengths, when compare to the spectrum of hemoglobin dissolved in water.
The latter indicates that the hemoglobin residues form molecular complexes
with the surfactant molecules. Weak (app.2*10-2) linear dichroism
of hemoglobin at the wavelengths corresponding to light absorption by oxygen
bonds gives the estimation of the orientational scalar order parameter
of hemoglobin molecules in well-aligned surfonematic matrix (app. 10-2)
 Keywords: birefringence, dichroism, hemoglobin,
surfactant nematic
 PACS: 42.25.Lc, 42.70.Df, 33.55-b, 42.66-p,
36.20-r
 Ukr. J. Phys. Opt.
8 31-41 
 doi: 10.3116/16091833/8/1/31/2007
 Received: 12.02.2007
    | 
 | 
 
 
REFERENCES
1. Saupe A, and Englert G, 1963. High-resolution nuclear magnetic resonance
spectra of oriented molecules. Phys. Rev. Lett. 11: 462464.
       doi:10.1103/PhysRevLett.11.462   
http://dx.doi.org/10.1103/PhysRevLett.11.462
 2. Bax A, 2002. Weak alignment offers new NMR opportunities to study
protein structure and dynamics. Protein Science, 12: 1-16.
         doi:10.1110/ps.0233303 
http://dx.doi.org/10.1110/ps.0233303
 3. Barrientos L, Dolan C, Gronenborn A, 2000. Characterization of surfactant
liquid crystal phases suitable for molecular alignment and measurement
of dipolar couplings NMR. Biomol. J. 16: 329337.
         doi:10.1023/A:1008356618658 
http://dx.doi.org/10.1023/A:1008356618658
 4. Gaemers S, and Bax A, 2001. Morphology of three lyotropic liquid
crystalline biological NMR media studied by translational diffusion anisotropy.
J.Am. Chem. Soc. 123: 1234312352.
         doi:10.1021/ja011967l 
http://dx.doi.org/10.1021/ja011967l
 5. Prosser R, Losonczi A, and Shiyanovskaya I,1998. Use of a novel
aqueous liquid crystalline medium for high-resolution NMR of macromolecules
in solution. J. Am. Chem. Soc. 120: 1101011011.
         doi:10.1021/ja982671r         
http://dx.doi.org/10.1021/ja982671r
 6. Ruckert M, and Otting G, 2000. Alignment of biological macromolecules
in novel nonionic liquid crystalline media for NMR experiments. J. Am.
Chem. Soc. 122: 77937797.
         doi:10.1021/ja001068h        
http://dx.doi.org/10.1021/ja001068h
 7. Struppe J, Vold R, Magn J, 1998. Bilute bicellar solutions for structural
NMR work. J. Mag. Reson. 135: 541546.
         doi:10.1006/jmre.1998.1605 
http://dx.doi.org/10.1006/jmre.1998.1605
 8. Lavrentovich O, Ishikawa T, Bulk alignment of lyotropic Chromonic
Liquis Crystals, US Patent No. 6, 411, 354 (2002) and 6,570,632 (2003).
 9. Nastishin Yu, Liu H, Schneider T, Nazarenko V, Vasyuta R, Shiyanovskii
S, and Lavrentovich O, 2005. Optical characterization of the nematic lyotropic
chromonic liquid crystals: light absorption, birefringence, and scalar
order parameter. Phys.Rev. E. 72:1-14
         doi:10.1103/PhysRevE.72.041711
http://dx.doi.org/10.1103/PhysRevE.72.041711
 10. Lydon J, 1998. Chromonic liquid crystal phases. In: Current opinion
in colloid & interface science 3:55, 458-466, Elsevier (1998).
 11. Nastishin Yu, 1996. Brine-rich corner of the phase diahram of the
ternary system cetylpyridium chloride-hehanol-brine. Langmuir. 12: 5011
5015.
         doi:10.1021/la960013j 
http://dx.doi.org/10.1021/la960013j
 12. Nastishin Yu, Lambert E, Boltenhagen Ph, 1995. Temperature-induced
structural transitions of the quasiternary system cetylpyridinium chloride-hexanol-brine.
C.R.Acad.Sci.Paris. 321: 205-210.
 13. Nastishin Yu, 1996. Temperature investigations of the system cetylpyridinium
chlorid-hexanol-brine.Ukr. Fiz. Zhurn. 41:185-189.
 14. Berret J.-F, Roux D, Porte G and Lindner P, 1994. Shear-induced
isotropic-to-nematic phase transition in equilibrium polymers. Europhys.
Lett. 25: 521-526
 15. Nastishin Yu, Polak R, Shiyanovskii S, Bodnar V and Lavrentovich,
1999. Determination of nematic polar anchoring from retardation versus
voltage measurements. J.Appl.Phys. 86: 4199-4213.
         doi:10.1063/1.371347 
 16. Gennes P. and Prost J. The Physics of Liquid Crystals. Oxford:
Clarenton Press (1993).
 17. Barois P, Nallete F, 1994. Anomalous birefringence of swollen lamellar
phases blue smectics. J.Phys.(France). 4:1049-1060.
         doi:10.1051/jp2:1994183
http://dx.doi.org/10.1051/jp2:1994183
 18. Born M. and Wolf E. Principles of optics. 7th ed. Cambridge: Cambridge
University Press (1999).
 19. Rogers J, and Winsor P, 1967. Optically Positive, Isotropic and
Negative Lamellar Liquid Crystalline Solutions. Nature 216: 477-479.
         doi:10.1038/216477a0 http://dx.doi.org/10.1038/216477a0
 20. Blinov L. Electro-Optical and Magneto-Optical Properties of Liquid
Crystals. New York: John Wiley & Sons Limite (1983).
 21. Konstantinova A., Grechushnikov B., Bokut B., Valyashko Ye. Optical
properties of crystals. Minsk: Navuka i Teknnika (1995).
 (c) Ukrainian Journal
of Physical Optics  |