Home
page
Other articles
in this issue
|
Optical-Gravitation Nonlinearity: A Change of Gravitational
Coefficient G induced by Gravitation Field
Vlokh R., Kostyrko M.
Institute of Physical Optics, 23 Dragomanov St., 79005
Lviv, Ukraine
download full version
Nonlinear effect of the gravitation field of spherically symmetric mass
on the gravitational coefficient G has been analysed. In frame of the approaches
of parametric optics and gravitation nonlinearity we have shown that the
gravitation field of spherically symmetric mass can lead to changes in
the gravitational coefficient G.
Key words: gravitation field, gravitational coefficient, optical-mechanical
analogy in general relativity
PACS: 42.25.-p, 78.20.Ci, 04.20.C
doi 10.3116/16091833/7/4/179/2006 |
|
References
1. Quinn TG, Speake CC, Richman SJ, Davis RS and Picard AA, 2001. Phys.
Rev. Lett. 87: 111101.
doi:10.1103/PhysRevLett.87.111101
http://dx.doi.org/10.1103/PhysRevLett.87.111101
2. Gundlach JH and Merkowitz SM, 2000. Phys. Rev. Lett. 85: 2869.
doi:10.1103/PhysRevLett.85.2869
http://dx.doi.org/10.1103/PhysRevLett.85.2869
3. Karagioz OV, Izmaylov VP and Gillies GT, 1999. Gravitation and Cosmology
5: 155.
4. Schwarz JP, Robertson DS, Niebauer TM and Faller JE, 1999. Meas.
Sci. Technol. 10: 478.
doi:10.1088/0957-0233/10/6/311
http://dx.doi.org/10.1088/0957-0233/10/6/311
5. Schlamminger St, Holzschuh E, Kündig W, Nolting F, Pixley RE,
Schurr J and Straumann U, 2006. Phys. Rev. D 74: 082001.
doi:10.1103/PhysRevD.74.082001
http://dx.doi.org/10.1103/PhysRevD.74.082001
6. Mohr PJ and Taylor BN, 2001. Phys. Today 6:.
7. Melnikov VN, gr-qc/9903110.
8. Damour T, gr-qc/9901046.
9. Nordtvedt K, 2003. Class. Quantum Grav. 20: L147.
doi:10.1088/0264-9381/20/11/101
http://dx.doi.org/10.1088/0264-9381/20/11/101
10. Barrow JD and O’Toole C, astro-ph/9904116.
11. Felice F, 1971. Gen. Rel. Grav. 2: 347.
doi:10.1007/BF00758153
http://dx.doi.org/10.1007/BF00758153
12. Evans J, Nandi KK and Islam A, 1996. Gen. Rel. Grav. 28: 413.
doi:10.1007/BF02105085
http://dx.doi.org/10.1007/BF02105085
13. Vlokh R, 2004. Ukr. J. Phys. Opt. 5: 27.
doi:10.3116/16091833/5/1/27/2004
http://dx.doi.org/10.3116/16091833/5/1/27/2004
14. Vlokh R and Kostyrko M, 2005. Ukr. J. Phys. Opt. 6: 120.
doi:10.3116/16091833/6/3/120/2005
http://dx.doi.org/10.3116/16091833/6/3/120/2005
15. Vlokh R and Kostyrko M, 2005. Ukr. J. Phys. Opt. 6: 125.
doi:10.3116/16091833/6/4/125/2005
http://dx.doi.org/10.3116/16091833/6/4/125/2005
16. Puthoff HE, 2002. Found. Phys. 32: 927.
doi:10.1023/A:1016011413407
http://dx.doi.org/10.1023/A:1016011413407
17. Nye JF, 2000. Physical properties of crystals: their representation
by tensors and matrices. New York, Oxford University Press.
18. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM and Turyshev SG,
1998. Phys. Rev. Lett. 81: 2858.
doi:10.1103/PhysRevLett.81.2858
http://dx.doi.org/10.1103/PhysRevLett.81.2858 |