Ukrainian Journal of Physical Optics 

Number  4, Volume 7,  2006

Home page
 
 

Other articles 
in this issue


Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field 
Vlokh R., Kostyrko M.

Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine

download full version

Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

Key words: gravitation field, gravitational coefficient, optical-mechanical analogy in general relativity

PACS: 42.25.-p, 78.20.Ci, 04.20.C

doi 10.3116/16091833/7/4/179/2006

References

1. Quinn TG, Speake CC, Richman SJ, Davis RS and Picard AA, 2001. Phys. Rev. Lett. 87: 111101.
        doi:10.1103/PhysRevLett.87.111101  http://dx.doi.org/10.1103/PhysRevLett.87.111101
2. Gundlach JH and Merkowitz SM, 2000. Phys. Rev. Lett. 85: 2869.
        doi:10.1103/PhysRevLett.85.2869  http://dx.doi.org/10.1103/PhysRevLett.85.2869
3. Karagioz OV, Izmaylov VP and Gillies GT, 1999. Gravitation and Cosmology 5: 155.
4. Schwarz JP, Robertson DS, Niebauer TM and Faller JE, 1999. Meas. Sci. Technol. 10: 478.
        doi:10.1088/0957-0233/10/6/311  http://dx.doi.org/10.1088/0957-0233/10/6/311
5. Schlamminger St, Holzschuh E, Kündig W, Nolting F, Pixley RE, Schurr J and Straumann U, 2006. Phys. Rev. D 74: 082001.
        doi:10.1103/PhysRevD.74.082001  http://dx.doi.org/10.1103/PhysRevD.74.082001
6. Mohr PJ and Taylor BN, 2001. Phys. Today 6:.
7. Melnikov VN, gr-qc/9903110.
8. Damour T, gr-qc/9901046.
9. Nordtvedt K, 2003. Class. Quantum Grav. 20: L147.
        doi:10.1088/0264-9381/20/11/101  http://dx.doi.org/10.1088/0264-9381/20/11/101
10. Barrow JD and O’Toole C, astro-ph/9904116.
11. Felice F, 1971. Gen. Rel. Grav. 2: 347.
        doi:10.1007/BF00758153  http://dx.doi.org/10.1007/BF00758153
12. Evans J, Nandi KK and Islam A, 1996. Gen. Rel. Grav. 28: 413.
        doi:10.1007/BF02105085  http://dx.doi.org/10.1007/BF02105085
13. Vlokh R, 2004. Ukr. J. Phys. Opt. 5: 27.
        doi:10.3116/16091833/5/1/27/2004  http://dx.doi.org/10.3116/16091833/5/1/27/2004
14. Vlokh R and Kostyrko M, 2005. Ukr. J. Phys. Opt. 6: 120.
        doi:10.3116/16091833/6/3/120/2005  http://dx.doi.org/10.3116/16091833/6/3/120/2005
15. Vlokh R and Kostyrko M, 2005. Ukr. J. Phys. Opt. 6: 125.
        doi:10.3116/16091833/6/4/125/2005  http://dx.doi.org/10.3116/16091833/6/4/125/2005
16. Puthoff HE, 2002. Found. Phys. 32: 927.
        doi:10.1023/A:1016011413407   http://dx.doi.org/10.1023/A:1016011413407
17. Nye JF, 2000. Physical properties of crystals: their representation by tensors and matrices. New York, Oxford University Press.
18. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM and Turyshev SG, 1998. Phys. Rev. Lett. 81: 2858.
        doi:10.1103/PhysRevLett.81.2858  http://dx.doi.org/10.1103/PhysRevLett.81.2858


Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions