Ukrainian Journal of Physical Optics 

Number  4, Volume 7,  2006

Home page

Other articles 
in this issue

Optical Properties of Nitrogen-Doped Epitaxial ZnO Layers
Rogozin I.V.

Berdyansk State Pedagogical University, 4 Shmidt St., 71118 Berdyansk, Ukraine

download full version

Epitaxial nitrogen-doped ZnO (ZnO:N) films are obtained by the method of radical beam gettering epitaxy. Their optical properties are examinated by means of transmission and photoluminescence (PL) spectroscopy. The as-grown ZnO:N films show high transmittance (about 90%) in the visible range. A peak at 3.31 eV is seen in the low-temperature PL spectrum of the N-doped ZnO films, which is probably due to a neutral acceptor-bound exciton NO. Post-thermal annealing is performed on ZnO:N films in the atomic oxygen conditions. The PL of the annealed samples shows a strong response improvement, when compare with the non-annealed samples. The nature of the donor-acceptor band located at 3.23 eV and the ‘green’ band at 2.56 eV is discussed.

Key words:  ZnO, N-doping, PL, intrinsic defects.

PACS: 61.72.Ji, 71.55. Gs, 78.40.Fy, 78.55.Et

doi 10.3116/16091833/7/4/159/2006

1. Look DC, Claflin B, Alivov YaI and Park SJ, 2004. Phys. Stat. Sol. (a) 201: 2203.
2. Özgür Ü, Alivov YaI, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S-J and Markoç H, 2005. J. Appl. Phys. 98: 041301.
3. Kaprpina VA, Lazorenko VI, Lashkarev CV, Dobrowolski VD, Kopylova LI, Baturin VA, Pustovoytov SA, Karpenko AJu, Eremin SA, Lytvyn PM, Ovsyannikov VP and Mazurenko EA, 2004. Cryst. Res. Technol. 39: 980.
4. Myong SY, Baik SJ, Lee ChH, Cho WY and Lim KS, 1997. Jpn. J. Appl. Phys. 36: L1078.
5. Hiramatsu M, Imaeda K, Horio N and Nawata M, 1998. J. Vac. Sci. Technol. A 16: 669.
6. Look DC, Jones RL, Sizelove JR, Garces NY, Giles NC and Halliburton LE, 2003. Phys. Stat. Sol. (a) 195: 171.
7. Zang SB, Wei S-H and Zunger A, 2001. Phys. Rev. B63: 075205.
8. Minegishi K, Koiwai Y, Kikuchi K, Yano K, Kasuga M and Shimizu A, 1997. Jpn. J. Appl. Phys. 36: L1453.
9. Liang HW, Lu YM, Shen DZ, Liu YC, Yan JF, Shan CX, Li BH, Zhang ZZ, Zhang JY and Fan XW, 2005. Phys. Stat. Sol. (a) 202: 1060.
10. Ryu YR, Zhu S, Look DC, Wrobel JM, Jeong HM and White HW, 2000. J. Cryst. Growth. 216: 330.
11. Vaithianathan V, Lee YH, Lee B-T, Hishita S and Kim SS, 2006. J. Cryst. Growth. 287: 85.
12. Joseph M, Tabata H and Kawai T, 1999. Jpn. J. Appl. Phys. 38: L1205.
13. Nakahara K, Takasu H, Fons P, Yamada A, Iwata K, Matsubara K, Hunger R and Niki S, 2002. J. Cryst. Growth. 237-239: 503.
14. Ye Z-Z, Zhu-Ge F, Lu J-G, Zhang Z-H, Zhu L-P, Zhao B-H and Huang J-Y, 2004. J. Cryst. Growth. 265: 127.
15. Georgobiani AN, Kotlyarevsky (Kotlyarevskii) MB and Rogozin IV, 2004. Inorganic Materials 41: Sppl. 1 S1.
16. Georgobiani AN, Kotlyarevsky MB and Rogozin IV, 1999. Nucl. Phys. B (Proc. Suppl.). 78: 484.
17. Georgobiani AN, Kotlyarevskii MB, Kidalov VV, Lepnev LS and Rogozin IV, 2001. Inorganic Materials 37: 1095.
18. Kotlyarevskii MB, Georgobiani AN, Rogozin IV and Marakhovskii (Marakhovsky) AV, 2003. J. Appl. Spectr. 70: 95.
19. Kohan AF, Ceder G, Morgan D and Van de Walle CG, 2000. Phys. Rev. B61: 15019.
20. Yang X, Du G, Wang X, Wang J, Liu B, Zhang Y, Liu D, Liu D, Ong HC and Yang S, 2003. J. Cryst. Growth. 252: 275.
21. Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB and Cantwell G, 2002. Appl. Phys. Lett. 81: 1830.
22. Tonke K, Gruber Th, Teofilov N, Schonfelder R, Waag A and Sauer R, 2001. Physica B 308-310: 945.
23. Yamauchi S, Goto Y and Hariu T, 2004. J. Cryst. Growth. 260: 1.
24. Park CH, Zang SB and Wei S-H, 2002. Phys. Rev. B66: 073202.
25. Iwata K, Fons P, Yamada A, Matsubara K and Niki S, 2000. J. Cryst. Growth. 209: 526.
26. Xu PS, Sun YM, Shi CS, Xu FQ and Pan HB, 2003. Nucl. Instrum. & Methods Phys. Res. B199: 286.
27. Simpson C and Cordaro JF, 1988. J. Appl. Phys. 63: 1781.
28. Kotlyarevsky MB, Rogozin IV and Marakhovsky AV, 2005. NATO Sci. Ser. II: Math., Phys. and Chem. 194: 25.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions