Ukrainian Journal of Physical Optics 

Number  4, Volume 7,  2006

Home page

Other articles 
in this issue

Optical Spectroscopy of Nd3+ Centres in the Glass with 3CaO-Ga2O3-3GeO2 Composition 
1,2Padlyak B., 1Vlokh O., 3Ryba-Romanowski W., 3Lisiecki R.

1Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine 
2Department of Physics, Kazimierz Wielki University of Bydgoszcz, 11 Weyssenhoff Sq., 85-072 Bydgoszcz, Poland
3Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, 2 Okólna St., 50-422 Wroclaw, Poland 

download full version

Optical absorption and luminescence spectra of Nd-doped glasses (0.2 and 1.0 wt. % of Nd2O3) with 3CaO-Ga2O3-3GeO2 (or Ca3Ga2Ge3O12 garnet) compositions are for the first time investigated in the temperature range of 4.2 - 300 K. EPR and optical spectroscopies have shown that the neodymium impurity is incorporated into the glass network exclusively as Nd3+ ions (the electron configuration 4f3 and the free-ion ground state 4I9/2). All the transitions of Nd3+ ions observed in the optical spectra are identified. The optical spectra of Nd3+ are analyzed with the standard Judd–Ofelt theory. The oscillator strengths, the intensity parameters W2, W4 and W6, the radiative emission probabilities, branching ratios and the radiative lifetime for Nd3+ ions in the glass with 3CaO-Ga2O3-3GeO2 composition are thus calculated. The luminescence kinetics of Nd3+ centres for 4F3/2 --> 4I11/2 transition at the room temperature could be satisfactorily described by exponential decay with the lifetimes 342 and 290 us for the samples containing respectively 0.2 and 1.0 wt. % of Nd2O3. The incorporation peculiarities, spectroscopic parameters and the local structure of luminescence Nd3+ centres in the glass with 3CaO-Ga2O3-3GeO2 composition are compared with those of the corresponding Ca3Ga2Ge3O12 garnet crystal.

Keywords: germanate glasses, Nd3+ ion, optical absorption, emission, decay kinetics

PACS: 42.70.Ce; 78.40.Pg; 78.55.Hx; 78.45.+h

doi 10.3116/16091833/7/4/149/2006

1. Mak AA, Soms LN, Fromzel VA and Yashin VE, 1990. Lasers on the basis of neodymium glass. Moscow, Nauka.
2. Laser phosphate glasses, Ed. Zhabotinskij ME, 1980. Moscow, Nauka.
3. Geusic J, Marcos HM and Van Uitert LG, 1964. Appl. Phys. Letters 4: 182.
4. Kaminskii AA, Osiko VV, Sarkisov SE, Timoshechkin MI, Zharikov EV, Bohm J, Reiche P and Shultze D, 1978. Phys. Stat. Sol. A 49: 305.
5. Struve B, Huber G, Laptev VV, Shcherbakov IA and Zharikov EV, 1982. Appl. Phys. B 28: 235.
6. Struve B and Huber G, 1985. J. Appl. Phys. 57: 45.
7. Zharikov EV, Il’ichev NN, Laptev VV, Malyutin AA, Ostroumov VG, Pashinin PP and Shcherbakov IA, 1982. Sov. J. Quantum Electron. 12: 338.
8. Caldiño UG, Jaque F, Balda R, Fernández J and Kaminskii AA, 1995. Opt. Mater. 4: 713.
9. Eskov NA, Osiko VV, Sobol AA, Timoshechkin MI, Butaeva TI, Chan Ngok and Kaminskii AA, 1978. Izv. Akad. Nauk USSR, Ser. Neorg. Mater. 14: 2254.
10. Caldiño UG, Bausá LE, García-Solé J, Jaque F, Kaminskii AA, Butashin AV and Mill BV, 1994. J. Physique IV (C4) 4: 389.
11. Cavalli E, Zannoni E, Belletti A, Carozzo V, Toncelli A, Tonelli M and Bettinelli M, 1999. Appl. Phys. B 68: 677.
12. Padlyak BV and Nosenko AE, 1988. Sov. Phys. Solid State 30: 1027.
13. Padlyak BV, Nosenko AE, Maksimenko VM and Kravchishin VV, 1993. Phys. Solid State 35: 1185.
14. Guyot Y, Bausá LE, Camarillo E, García- Solé J, Vergara I, Monteil A and Moncorgé R, 1992. J. Appl. Phys. 72: 5876.
15. Tocho JO, Jaque F, García-Solé J, Camarillo E, Cussó F and Muñoz-Santiuste JE, 1992. Appl. Phys. Lett. 60: 3206.
16. Singh S, Smith RG and Van Uitert LG, 1974. Phys. Rev. B 10: 2566.
17. Sardar DK, Vizcarra S, Islam MA, Allik TH, Sharp EJ and PintoAA, 1994. J. Lumin. 60&61: 97.
18. Sardar DK, Vizcarra S, Islam MA, Allik TH, Sharp EJ and Pinto AA, 1994. Opt. Mater. 3: 257.
19. Sardar DK, and Stubblefield SC, 1996. Appl. Phys. 80: 5275.
20. Ryba-Romanowski W, 1993. Acta Phys. Pol. 84: 945.
21. Damen JPM, Pistorius JA and Robertson JM, 1977. Mater. Res. Bull. 12: 73.
22. Mill BV, Butashin AV, Ellern AM and Majer AA, 1981. Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 17: 1648.
23. Padlyak BV and Buchynskii PP, Patent of Ukraine, No. UA 25235 A, October 30, 1998.
24. Ramos F, Loro H, Camarillo E, García-Solé J, Kaminskii AA and Caldiño UG, 1999. Opt. Mater. 12: 93.
25. Caldiño UG, Voda M, Jaque F and García Solé, 1993. J. Chem. Phys. Lett. 213: 84.
26. Jaque D, Caldiño UG, Romero JJ and García Solé J, 1999. J. Lumin. 83-84: 477.
27. Kaminskii AA, Belokoneva EL, Mill BV, Pisarevskii YuV, Sarkisov SE, Silvestrova IM, Butashin AV and Khodzhabagyan GG, 1984. Phys. Stat. Sol. (a) 86: 345.
28. Padlyak B, Ryba-Romanowski W, Lisiecki R and Kuklinski B, 2006. “6th European conference on luminescent detectors and transformers of ionizing radiation (LUMDETR 2006)”. Book of Abstracts. 187.
29. Padlyak B, Mudry S, Halchak V, Korolyshyn A, Rybicki J and Witkowska A, 2000. Opt. Appl. 30: 691.
30. Chelstowski D, Witkowska A, Rybicki J, Padlyak B, Trapananti A and Principi E, 2003. Opt. Appl. 33: 125.
31. Witkowska A, Padlyak BV and Rybicki J, 2006. J. Non-Cryst. Solids 352: 4346.
32. Witkowska A, Padlyak BV, Feliziani S and Rybicki J, 2006. “6th European conference on luminescent detectors and transformers of ionizing radiation (LUMDETR 2006)”. Book of Abstracts. 203.
33. Carnall WT, Fields PR and Rajnak K, 1968. J. Chem. Phys. 49: 4424.
34. Henderson B and Bartram RH, 2000. Crystal-field engineering of solid-state laser materials. Cambridge, Cambridge University Press.
35. Pecoraro E, Sampaio JA, Nunes LAO, Gama S and Baesso ML, 2000. J. Non-Cryst. Solids 277: 73.
36. Courrol LC, Kassab LRP, Cacho VDD, Tatumi SH and Wetter NU, 2003. J. Lumin. 102-103: 101.
37. Sene FF, Martinelli JR and Gomes L, 2004. J. Non-Cryst. Solids 348: 63.
38. Padlyak BV and Kuklinski B, 2004. Radiat. Meas. 38: 593.
39. Judd BR, 1962. Phys. Rev. 127: 750.
40. Ofelt GS, 1962. J. Chem. Phys. 37: 511.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions