Ukrainian Journal of Physical Optics 

Number  3, Volume 7,  2006


Home page
 
 

Other articles 
in this issue


Structure and Orbital Angular Momentum of Singular Array of Gaussian Beams  
Volyar A., Shvedov V., Izdebskaya Ya., Fadeyeva T., Rubass A.

Physics Department, Taurida National V. Vernandsky University, 4 Vernadsky Ave., 95007 Simferopol, Crimea, Ukraine

download full version

We consider theoretically and experimentally the structure and the orbital angular momentum (OAM) of the beam array consisting of aggregate of coherent fundamental Gaussian beams, whose axes are located on the surface of hyperboloid of revolution. An intrinsic characteristic of such the beam system is its OAM that cannot be eliminated by whatever transformations of the reference frame. This construction of the array enables one to change the OAM from zero up to very large values.

Key words: singular beams, optical vortices

PACS: 41.85.Ja, 41.85.Ct

doi 10.3116/16091833/7/3/79/2006

1. Bouchal Z and Courtial J, 2004. J. Opt. Soc. Am. A 6: 184.
2. Desyatnikov AS, Denz C and Kivshar YuS, 2004. Opt. Soc. Am. A6: 209. Desyatnikov AS, Kivshar YuS and Torner L, 2005. Progress in Optics 47: 1.
3. Allen L, Paddget M and Babiker B, 1999. Progress in Optics 39: 291.
4. Baida Lii and Hong Ma, 2000. Opt. Comm. 178.
5. Engel E, Huse N, Klar T and Hell S, 2003. Appl. Phys. 77: 11.
        doi:10.1007/s00340-003-1239-y  http://dx.doi.org/10.1007/s00340-003-1239-y
6. Bouchal Z, 2004. J. Opt. Soc. Am. A. 21: 1694.
        doi:10.1364/JOSAA.21.001694  http://dx.doi.org/10.1364/JOSAA.21.001694
7. Swartzlander GA and Schmit J, 2004. Phys. Rev. Lett. 93: 093901.
        doi:10.1103/PhysRevLett.93.093901  http://dx.doi.org/10.1103/PhysRevLett.93.093901
8. Izdebskaya Ya, Shvedov V and Volyar A, 2005. Opt. Lett. 30: 2472.
        doi:10.1364/OL.30.002472  http://dx.doi.org/10.1364/OL.30.002472
9. Vasnetsov M, Pas’ko V and Soskin M, 2005. New J. Phys. 7: 2.
        doi:10.1088/1367-2630/7/1/002  http://dx.doi.org/10.1088/1367-2630/7/1/002
10. Berry M, 1998. Proc. SPIE. 3487: 6.
        doi:10.1117/12.317704  http://dx.doi.org/10.1117/12.317704
11. Bekshaev A, Soskin M and Vasnetsov M, 2005. Opt. Comm. 249: 367.
        doi:10.1016/j.optcom.2005.01.046  http://dx.doi.org/10.1016/j.optcom.2005.01.046
12. Izdebskaya Ya, Shvedov V and Volyar A, 2005. Opt. Lett. 30: 2530.
        doi:10.1364/OL.30.002530  http://dx.doi.org/10.1364/OL.30.002530
13. Handbook of mathematical functions. Ed. Abramowitz M and Stegun I, 1964. National bureau of standards. Applied Mathematics series. 55 N.Y.


Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions