Home
page
Other articles
in this issue |
Optical Birefringence and Domain Structure of the as-grown
Rb2xTl2(1-x)Cd2(SO4)3 Solid Solutions at Phase Transitions
1Say A., 2Sveleba S., 1Teslyuk
I., 1Martynyuk-Lototska I., 1Girnyk I., 1Vlokh
R.
1Institute of Physical Optics, 23 Dragomanov
St., 79005 Lviv, Ukraine
2Electronics Department, Lviv National
University, 107 Tarnavski St., 79017 Lviv, Ukraine
download full version
and Errata
It is shown that the as-grown solid solutions Tl2xRb2(1-x)Cd2(SO4)3
possess a residual optical birefringence in the cubic phase at room temperature.
The existence of both the residual birefringence and the residual domain
structure in the compound with at the room temperature, along
with the domain walls orientation and the orientation of extinction positions
of the neighbouring domains, indicate that the above domain structure corresponds
to “forbidden” ferroelastic domains of the phase P212121. On the basis
of measurements for the temperature variation of the birefringence and
observations of the domain structure transformations, one can conclude
that the phases with the symmetries P213 and P21 coexist above Tc1 in the
compounds with x = 0.7 – 1.0. The phase transition temperatures Tc1, Tc2,
and Tc3 obtained from the temperature birefringence variations agree
well with those obtained previously, using the studies of thermal expansion
and ultrasonic wave velocities.
Key words: optical birefringence, phase transitions, langbeinite
crystals, Tl2xRb2(1-x)Cd2(SO4)3 solid solutions.
PACS: 42.25.Lc, 78.20.Fm, 77.80.-e
Ukr. J. Phys. Opt. 7 41-47 doi: 10.3116/16091833/7/1/41/2006
Receiced: 03.02.2006 |
|
REFERENCES
1.Vlokh R, Vlokh OV, Skab I and Girnyk I, 2002. Ukr. J. Phys. Opt. 3:
144.
doi:10.3116/16091833/3/2/144/2002
http://dx.doi.org/10.3116/16091833/3/2/144/2002
Vlokh R, Vlokh OV, Skab I and Girnyk I, 2002. Ukr. J. Phys. Opt. 3:
215.
doi:10.3116/16091833/3/3/215/2002
http://dx.doi.org/10.3116/16091833/3/3/215/2002
Vlokh R, Vlokh OV, Skab I and Girnyk I, 2002. Ukr. J. Phys. Opt. 3:
231.
doi:10.3116/16091833/3/4/231/2002
http://dx.doi.org/10.3116/16091833/3/4/231/2002
2. Gustafsson JCM, Norberg ST, Svensson G and Albertsson J, 2005. Acta
Cryst. C61 i9.
3. Trubach IG, Beskrovny AI, Orlova AI, Orlova VA and Karazhkovskaya
VS, 2004. Crystallogr. Rep. 49: 895.
doi:10.1134/1.1828132 http://dx.doi.org/10.1134/1.1828132
4. Vlokh R, Girnyk I, Vlokh OV, Skab I, Say A and Uesu Y, 2004. Ukr.
J. Phys. Opt. 5: 141.
doi:10.3116/16091833/5/4/141/2004
http://dx.doi.org/10.3116/16091833/5/4/141/2004
5. Vlokh R, Vlokh O, Kityk A, Skab I, Czapla Z, Kosturek B and Dacko
S, 2000. Ferroelectrics 237: 481.
6. Vlokh R, Girnyk I, Martunyuk-Lototska I, Czapla Z, Dacko S and Kosturek
B, 2004. Ferroelectrics 303: 51.
doi:10.1080/00150190490456556
http://dx.doi.org/10.1080/00150190490456556
7. Dvorak V, 1972. Phys. Stat. Sol. (b) 52: 93. Dvorak V, 1974. Phys.
Stat. Sol. (b) 66: K87.
8. Vlokh R, Skab I, Girnyk I, Czapla Z, Dacko S and Kosturek B, 2000.
Ukr. J. Phys. Opt. 1: 103.
doi:10.3116/16091833/1/2/103/2000
http://dx.doi.org/10.3116/16091833/1/2/103/2000
9. Maeda M, 1980. J. Phys. Soc. Jap. 49: 1090.
doi:10.1143/JPSJ.49.1090
http://dx.doi.org/10.1143/JPSJ.49.1090
10. Brezina B and Havrankova M, 1974. J. Cryst. Growth 21: 77.
doi:10.1016/0022-0248(74)90154-7
http://dx.doi.org/10.1016/0022-0248(74)90154-7
11. Magome E, Moriyoshi C, Itoh K and Vlokh R, 2002. Ferroelectrics
269: 93.
doi:10.1080/00150190211164
http://dx.doi.org/10.1080/00150190211164
12. Vlokh RO and Shopa YI, 1998. Kristallografiya 33: 520.
13. Hernandez-Rodriguez C, Geday MA, Kreisel J, Glazer AM and Hidalgo-Lopez
A, 2003. J. Appl. Cryst. 36: 914.
doi:10.1107/S002188980300476X
http://dx.doi.org/10.1107/S002188980300476X
14. Itoh K, Ukeda T and Nakamura E, 1992. J. Phys. Soc. Jap. 61: 4657.
doi:10.1143/JPSJ.61.4657
http://dx.doi.org/10.1143/JPSJ.61.4657
15. Sapriel J, 1975. Phys. Rev. B 12: 5128
doi:10.1103/PhysRevB.12.5128
http://dx.doi.org/10.1103/PhysRevB.12.5128
(c) Ukrainian Journal
of Physical Optics |