Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Optical Geometric Properties of Skin Epidermis Surface: Statistical and Fractal Approach 
Angelsky O.V., Ushenko A.G., Ushenko Yu.A.

Correlation Optics Department, Chernivtsi National University, 2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine

download full version

Interrelation between the polarization state of local zones of the object field and the inclination angles of skin epidermis plates has been found within a single-scattering approximation. The technique for the polarization reconstruction of coordinate distribution of the inclination angles of surface micro-irregularities referred to the skin epidermis has been suggested. The first-to-fourth orders statistics for the optical geometric properties of rough surface of physio-logically normal and pathologically changed skins has been analyzed. It has been shown that the microrelief of the healthy skin surface has a fractal angular structure. Pathological changes cause random distribution of the inclination angles of the skin surface micro-irregularities.

Keywords: biological tissue, statistical moments, power spectrum.

PACS: 42.62.-b, 42.62.Be, 42.25.Lc, 42.25.Ja, 81.70.Tx
Ukr. J. Phys. Opt. 7 27-34 
doi: 10.3116/16091833/7/1/27/2006
Received: 21.12.2005

 

REFERENCES

1. Ushenko AGand Pishak VP, 2004. in ‘Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science’ (Ed. V.Tuchin), Kluwer Academic Publishers, 67–93.
2. Schmitt JM, Zhou GX, Walker EC and Wall RTJ, 1990, Opt. Soc. Am. A 7: 2141.
3. Graaff R, Dassel ACM, Koelink MH, de Mul FFM, Aarnoudse JG and Zijlstra WG, 1993. Appl. Opt. 32: 435.
4. van Gemert MJC, Smithies DJ, Verkruysse W, Milner TE and Nelson JS, 1997. Phys. Med. Biol. 42: 41.
        doi:10.1088/0031-9155/42/1/002 http://dx.doi.org/10.1088/0031-9155/42/1/002
5. Muller G and Roggan A, 1995. Laser-induced intestinal thermotherapy (Ed.), Bellingham, SPIE.
6. Pishak VP, Gryhoryshyn P and Yermolenko S, 1997. Proc. SPIE 3317: 418.
        doi:10.1117/12.295715 http://dx.doi.org/10.1117/12.295715
7. Ushenko AG, 2000. Laser Physics 10: 1.
8. Ushenko AG, 2000. Laser Physics 10: 1143.
9. Ushenko YuA, 2004. Proc. SPIE 5477: 506.
        doi:10.1117/12.560024 http://dx.doi.org/10.1117/12.560024
10. Feder J, 1988. Fractals New York: Plenum Press.
11. Marx E and Vorburger T V, 1990. Appl. Opt. 29: 3613.
12. Gerrard A and Burch JM, 1975. Introduction to matrix methods in optics New York: John Wiley & Sons.
13. Ushenko AG, 1995. Opt. Eng. 34: 1088.
        doi:10.1117/12.197186 http://dx.doi.org/10.1117/12.197186
14. Zhao YP, Cheng CF, Wang GC and Lu TM, 1998. Surface Sci. Lett. 409: L703–L708.
        doi:10.1016/S0039-6028(98)00274-X http://dx.doi.org/10.1016/S0039-6028(98)00274-X
15. Whitehouse DJ, 2001. Wear 249: 345–353.
        doi:10.1016/S0043-1648(01)00535-X  http://dx.doi.org/10.1016/S0043-1648(01)00535-X
16. Somekh MG, Valera MS and Appel RK 1992. Proc. SPIE 1647: 28.
        doi:10.1117/12.60190 http://dx.doi.org/10.1117/12.60190

(c) Ukrainian Journal of Physical Optics