Home
page
Other articles
in this issue |
Optical Geometric Properties of Skin Epidermis Surface:
Statistical and Fractal Approach
Angelsky O.V., Ushenko A.G., Ushenko Yu.A.
Correlation Optics Department, Chernivtsi National University,
2 Kotsyubinsky St., 58012 Chernivtsi, Ukraine
download full version
Interrelation between the polarization state of local zones of the object
field and the inclination angles of skin epidermis plates has been found
within a single-scattering approximation. The technique for the polarization
reconstruction of coordinate distribution of the inclination angles of
surface micro-irregularities referred to the skin epidermis has been suggested.
The first-to-fourth orders statistics for the optical geometric properties
of rough surface of physio-logically normal and pathologically changed
skins has been analyzed. It has been shown that the microrelief of the
healthy skin surface has a fractal angular structure. Pathological changes
cause random distribution of the inclination angles of the skin surface
micro-irregularities.
Keywords: biological tissue, statistical moments, power spectrum.
PACS: 42.62.-b, 42.62.Be, 42.25.Lc, 42.25.Ja, 81.70.Tx
Ukr. J. Phys. Opt. 7 27-34
doi: 10.3116/16091833/7/1/27/2006
Received: 21.12.2005
|
|
REFERENCES
1. Ushenko AGand Pishak VP, 2004. in ‘Coherent-Domain Optical Methods.
Biomedical Diagnostics, Environmental and Material Science’ (Ed. V.Tuchin),
Kluwer Academic Publishers, 67–93.
2. Schmitt JM, Zhou GX, Walker EC and Wall RTJ, 1990, Opt. Soc. Am.
A 7: 2141.
3. Graaff R, Dassel ACM, Koelink MH, de Mul FFM, Aarnoudse JG and Zijlstra
WG, 1993. Appl. Opt. 32: 435.
4. van Gemert MJC, Smithies DJ, Verkruysse W, Milner TE and Nelson
JS, 1997. Phys. Med. Biol. 42: 41.
doi:10.1088/0031-9155/42/1/002
http://dx.doi.org/10.1088/0031-9155/42/1/002
5. Muller G and Roggan A, 1995. Laser-induced intestinal thermotherapy
(Ed.), Bellingham, SPIE.
6. Pishak VP, Gryhoryshyn P and Yermolenko S, 1997. Proc. SPIE 3317:
418.
doi:10.1117/12.295715 http://dx.doi.org/10.1117/12.295715
7. Ushenko AG, 2000. Laser Physics 10: 1.
8. Ushenko AG, 2000. Laser Physics 10: 1143.
9. Ushenko YuA, 2004. Proc. SPIE 5477: 506.
doi:10.1117/12.560024 http://dx.doi.org/10.1117/12.560024
10. Feder J, 1988. Fractals New York: Plenum Press.
11. Marx E and Vorburger T V, 1990. Appl. Opt. 29: 3613.
12. Gerrard A and Burch JM, 1975. Introduction to matrix methods in
optics New York: John Wiley & Sons.
13. Ushenko AG, 1995. Opt. Eng. 34: 1088.
doi:10.1117/12.197186 http://dx.doi.org/10.1117/12.197186
14. Zhao YP, Cheng CF, Wang GC and Lu TM, 1998. Surface Sci. Lett.
409: L703–L708.
doi:10.1016/S0039-6028(98)00274-X
http://dx.doi.org/10.1016/S0039-6028(98)00274-X
15. Whitehouse DJ, 2001. Wear 249: 345–353.
doi:10.1016/S0043-1648(01)00535-X
http://dx.doi.org/10.1016/S0043-1648(01)00535-X
16. Somekh MG, Valera MS and Appel RK 1992. Proc. SPIE 1647: 28.
doi:10.1117/12.60190 http://dx.doi.org/10.1117/12.60190
(c) Ukrainian Journal
of Physical Optics |