Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Spectroscopy of Mn-Doped Glasses Of CaO-Ga2O3-GeO2 System  
1,2Padlyak B., 1Vlokh O., 3Kuklinski B., 4Sagoo K.

1Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine
2Department of Physics, Kazimierz Wielki University of Bydgoszcz, 11 Weyssenhoff Sq., 85072 Bydgoszcz, Poland
3Institute of Experimental Physics, University of Gda?sk, 57 Wita Stwosza St., 80952 Gdansk, Poland
4Jobin Yvon IBH Ltd., 45 Finnieston St., G3 8JU Glasgow, UK 

download full version

The EPR, UV and visible optical spectra of absorption, luminescence excitation and emission, as well as the luminescence kinetics of impurity Mn2+ centres in Mn-doped glasses of CaO-Ga2O3-GeO2 system have been measured and analysed. The EPR spectra of as-synthesised Mn-doped glasses consist of three broad bands with the effective g-factors geff ~ 4.3, 3.0 and 2.0. The observed spectra have been attributed to both the isolated Mn2+ (3d5, 6S5/2) ions occupying octahedral sites and revealing a broad distribution of crystal field parameters, as well as small clusters of Mn2+ ions. The optical spectroscopy has shown that the manganese impurity is incorporated into octahedral sites of CaO-Ga2O3-GeO2 glass network as both Mn2+ and Mn3+ ions. The intense broad absorption band with the maximum near 460 nm is related to the spin-allowed 5Eg --> 5T2g transition of Mn3+ ions in trigonally distorted octahedral sites of CaO-Ga2O3-GeO2 glass network. The weak spin-forbidden absorption lines of Mn2+ ions have not been observed against the background of a strong absorption band of Mn3+. The observed luminescence band with the maximum in the vicinity of 650 nm is explained by T1g --> 6A1g transition of Mn2+ ions occurring in trigonally distorted octahedral sites. The luminescence decay curve of Mn2+ could be satisfactorily described within two-exponent approximation. The two different lifetimes (t1 = 12.4 ms and t2 = 3.98 ms at lexc = 300 nm) correspond to the two types of Mn2+ centres with different local environments. A possible local structure of different Mn2+ centres in CaO-Ga2O3-GeO2 glass network is discussed.

Keywords: germanate glasses; manganese ions; electron paramagnetic resonance; optical absorption; photoluminescence; luminescence decay

PACS: 42.70.Ce, 71.55.Jv, 76.30.Fc, 78.40.Pg, 78.55.Hx
Ukr. J. Phys. Opt. 7 1-10  doi: 10.3116/16091833/7/1/1/2006
Received: 04.11.2005
 

REFERENCES

1. Shionoya S and Yen WM, 1999. Phosphor handbook, Chapter 3, CRS Press, Boca Raton, FL .
2. Blasse G and Bril A, 1970. Philips Tech. Rev. 31: 304.
3. Qiu J, Zhu C, Nakaya T, Si J, Kojima K., Ogura F and Hirao K, 2001. Appl. Phys. Lett. 79: 3567.
        doi:10.1063/1.1421640 http://dx.doi.org/10.1063/1.1421640
4. Reisfeld R, Kisilev A and Jorgensen CK, 1984. Chem. Phys. Lett. 111: 19.
        doi:10.1016/0009-2614(84)80430-3 http://dx.doi.org/10.1016/0009-2614(84)80430-3
5. Faber AJ, van Die A, Blasse G and van der Weg F, 1987. Phys. Chem. Glasses 28:150.
6. Machado IEC, Prado L, Gomes L, Prison JM and Martinelli JR, 2004. J. Non-Cryst. Solids 348: 113.
        doi:10.1016/j.jnoncrysol.2004.08.135 http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.135
7. Damen JPM, Pistorius JA and Robertson JM, 1977 Mater. Res. Bull. 12: 73.
        doi:10.1016/0025-5408(77)90090-3 http://dx.doi.org/10.1016/0025-5408(77)90090-3
8. Mill BV, Butashin AV, Ellern AM and Majer AA, Izv. Akad. Nauk SSSR, 1981. Ser. Neorg. Mater. 17: 1648.
9. Padlyak BV and Buchynskii PP, 1998. Patent of Ukraine No. UA 25235 A, October 30.
10. Padlyak B, Mudry S, Halchak V, Korolyshyn A, Rybicki J and Witkowska A, 2000. Opt. Appl. 30: 691.
11. Nosenko AE, Padlyak BV and Kravchishin VV, 1985. Sov. Phys.: Solid State. 27: 2083.
12. Nosenko AE, Abramov AP, Kostyk LV, Bily AI and Kravchishin VV, 1986. Opt. Spektrosk. 61: 1037.
13. Padlyak B.V. and Nosenko A.E. Sov. Phys.: Solid State 30 (1988) 1027.
14. Nosenko A.E., Leshchuk R.Ye. and Padlyak B.V. Zhurn. Prikl. Spektrosk. 59 (1993) 146 (in Russian).
15. Nosenko AE, Leshchuk RYe and Padlyak BV, 1995. Radiation Effects and Defects in Solids 135: 55.
16. Padlyak BV and Gutsze A 1998. Appl. Magn. Reson. 14: 59.
17. Padlyak B, Kuklinski B and Grinberg M, 2001. Proc. International Congress on Glass, Edinburgh, Scotland. 2: 773.
18. Padlyak BV, Kuklinski B and Grinberg M, 2002. Phys. Chem. Glasses C 43: 392.
19. Loveridge D and Parke S, 1971. Phys. Chem. Glasses 12: 19.
20. Griscom DLJ, 1980. Non-Crystal. Solids 40: 211.
21. Brodbeck CM and Bukrey RR, 1981. Phys. Rev. B 24: 2334.
        doi:10.1103/PhysRevB.24.2334 http://dx.doi.org/10.1103/PhysRevB.24.2334
22. Padlyak BV, Bordun OM and Buchynskii PP, 1999. Acta Phys. Polon. A 95: 921.
23. Padlyak BV and Kuklinski B, 2004. Radiat. Meas. 38: 593.
        doi:10.1016/j.radmeas.2004.02.013 http://dx.doi.org/10.1016/j.radmeas.2004.02.013
24. Sviridov DT, Sviridova RL and Smirnov YuF, 1976. Optical spectra of transition metal ions in crystals, Nauka, Moscow.
25. Henderson B and Bartram RH, 2000. Crystal-field engineering of solid-state laser materials, Cambridge University Press, Cambridge.
26. Vink AP, de Bruin MA, Roke S, Peijzel PS and Meijerink A J, 2001. Electrochem. Soc. E 148: 313.
        doi:10.1149/1.1375169 http://dx.doi.org/10.1149/1.1375169
27. Ronda CR and Amrein T, 1996. J. Lumin. 69: 245.
        doi:10.1016/S0022-2313(96)00103-2 http://dx.doi.org/10.1016/S0022-2313(96)00103-2
28. Tanabe Y and Sugano S, 1954. J. Phys. Soc. Japan 9: 753; Tanabe Y and Sugano S J, 1954. Phys. Soc. Japan 9: 766.
29. Padlyak BV, Koepke Cz, Wisniewski K, Grinberg M, Gutsze A and Buchynskii PP, 1998. J. Lumin. 79: 1.
        doi:10.1016/S0022-2313(98)00019-2 http://dx.doi.org/10.1016/S0022-2313(98)00019-2

(c) Ukrainian Journal of Physical Optics