Home
page
Other articles
in this issue |
Spectroscopy of Mn-Doped Glasses Of CaO-Ga2O3-GeO2
System
1,2Padlyak B., 1Vlokh O., 3Kuklinski
B., 4Sagoo K.
1Institute of Physical Optics, 23 Dragomanov
St., 79005 Lviv, Ukraine
2Department of Physics, Kazimierz Wielki
University of Bydgoszcz, 11 Weyssenhoff Sq., 85072 Bydgoszcz, Poland
3Institute of Experimental Physics,
University of Gda?sk, 57 Wita Stwosza St., 80952 Gdansk, Poland
4Jobin Yvon IBH Ltd., 45 Finnieston
St., G3 8JU Glasgow, UK
download
full version
The EPR, UV and visible optical spectra of absorption, luminescence
excitation and emission, as well as the luminescence kinetics of impurity
Mn2+ centres in Mn-doped glasses of CaO-Ga2O3-GeO2
system have been measured and analysed. The EPR spectra of as-synthesised
Mn-doped glasses consist of three broad bands with the effective g-factors
geff ~ 4.3, 3.0 and 2.0. The observed spectra
have been attributed to both the isolated Mn2+ (3d5,
6S5/2)
ions occupying octahedral sites and revealing a broad distribution of crystal
field parameters, as well as small clusters of Mn2+ ions. The
optical spectroscopy has shown that the manganese impurity is incorporated
into octahedral sites of CaO-Ga2O3-GeO2 glass network as both Mn2+
and Mn3+ ions. The intense broad absorption band with the maximum
near 460 nm is related to the spin-allowed
5Eg -->
5T2g
transition of Mn3+ ions in trigonally distorted octahedral sites
of CaO-Ga2O3-GeO2 glass network. The weak
spin-forbidden absorption lines of Mn2+ ions have not been observed
against the background of a strong absorption band of Mn3+.
The observed luminescence band with the maximum in the vicinity of 650
nm is explained by T1g --> 6A1g transition
of Mn2+ ions occurring in trigonally distorted octahedral sites.
The luminescence decay curve of Mn2+ could be satisfactorily
described within two-exponent approximation. The two different lifetimes
(t1 = 12.4 ms and t2
= 3.98 ms at lexc = 300 nm) correspond
to the two types of Mn2+ centres with different local environments.
A possible local structure of different Mn2+ centres in CaO-Ga2O3-GeO2
glass network is discussed.
Keywords: germanate glasses; manganese ions; electron paramagnetic
resonance; optical absorption; photoluminescence; luminescence decay
PACS: 42.70.Ce, 71.55.Jv, 76.30.Fc, 78.40.Pg, 78.55.Hx
Ukr. J. Phys. Opt. 7 1-10 doi: 10.3116/16091833/7/1/1/2006
Received: 04.11.2005
|
|
REFERENCES
1. Shionoya S and Yen WM, 1999. Phosphor handbook, Chapter 3, CRS Press,
Boca Raton, FL .
2. Blasse G and Bril A, 1970. Philips Tech. Rev. 31: 304.
3. Qiu J, Zhu C, Nakaya T, Si J, Kojima K., Ogura F and Hirao K, 2001.
Appl. Phys. Lett. 79: 3567.
doi:10.1063/1.1421640 http://dx.doi.org/10.1063/1.1421640
4. Reisfeld R, Kisilev A and Jorgensen CK, 1984. Chem. Phys. Lett.
111: 19.
doi:10.1016/0009-2614(84)80430-3
http://dx.doi.org/10.1016/0009-2614(84)80430-3
5. Faber AJ, van Die A, Blasse G and van der Weg F, 1987. Phys. Chem.
Glasses 28:150.
6. Machado IEC, Prado L, Gomes L, Prison JM and Martinelli JR, 2004.
J. Non-Cryst. Solids 348: 113.
doi:10.1016/j.jnoncrysol.2004.08.135
http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.135
7. Damen JPM, Pistorius JA and Robertson JM, 1977 Mater. Res. Bull.
12: 73.
doi:10.1016/0025-5408(77)90090-3
http://dx.doi.org/10.1016/0025-5408(77)90090-3
8. Mill BV, Butashin AV, Ellern AM and Majer AA, Izv. Akad. Nauk SSSR,
1981. Ser. Neorg. Mater. 17: 1648.
9. Padlyak BV and Buchynskii PP, 1998. Patent of Ukraine No. UA 25235
A, October 30.
10. Padlyak B, Mudry S, Halchak V, Korolyshyn A, Rybicki J and Witkowska
A, 2000. Opt. Appl. 30: 691.
11. Nosenko AE, Padlyak BV and Kravchishin VV, 1985. Sov. Phys.: Solid
State. 27: 2083.
12. Nosenko AE, Abramov AP, Kostyk LV, Bily AI and Kravchishin VV,
1986. Opt. Spektrosk. 61: 1037.
13. Padlyak B.V. and Nosenko A.E. Sov. Phys.: Solid State 30 (1988)
1027.
14. Nosenko A.E., Leshchuk R.Ye. and Padlyak B.V. Zhurn. Prikl. Spektrosk.
59 (1993) 146 (in Russian).
15. Nosenko AE, Leshchuk RYe and Padlyak BV, 1995. Radiation Effects
and Defects in Solids 135: 55.
16. Padlyak BV and Gutsze A 1998. Appl. Magn. Reson. 14: 59.
17. Padlyak B, Kuklinski B and Grinberg M, 2001. Proc. International
Congress on Glass, Edinburgh, Scotland. 2: 773.
18. Padlyak BV, Kuklinski B and Grinberg M, 2002. Phys. Chem. Glasses
C 43: 392.
19. Loveridge D and Parke S, 1971. Phys. Chem. Glasses 12: 19.
20. Griscom DLJ, 1980. Non-Crystal. Solids 40: 211.
21. Brodbeck CM and Bukrey RR, 1981. Phys. Rev. B 24: 2334.
doi:10.1103/PhysRevB.24.2334
http://dx.doi.org/10.1103/PhysRevB.24.2334
22. Padlyak BV, Bordun OM and Buchynskii PP, 1999. Acta Phys. Polon.
A 95: 921.
23. Padlyak BV and Kuklinski B, 2004. Radiat. Meas. 38: 593.
doi:10.1016/j.radmeas.2004.02.013
http://dx.doi.org/10.1016/j.radmeas.2004.02.013
24. Sviridov DT, Sviridova RL and Smirnov YuF, 1976. Optical spectra
of transition metal ions in crystals, Nauka, Moscow.
25. Henderson B and Bartram RH, 2000. Crystal-field engineering of
solid-state laser materials, Cambridge University Press, Cambridge.
26. Vink AP, de Bruin MA, Roke S, Peijzel PS and Meijerink A J, 2001.
Electrochem. Soc. E 148: 313.
doi:10.1149/1.1375169 http://dx.doi.org/10.1149/1.1375169
27. Ronda CR and Amrein T, 1996. J. Lumin. 69: 245.
doi:10.1016/S0022-2313(96)00103-2
http://dx.doi.org/10.1016/S0022-2313(96)00103-2
28. Tanabe Y and Sugano S, 1954. J. Phys. Soc. Japan 9: 753; Tanabe
Y and Sugano S J, 1954. Phys. Soc. Japan 9: 766.
29. Padlyak BV, Koepke Cz, Wisniewski K, Grinberg M, Gutsze A and Buchynskii
PP, 1998. J. Lumin. 79: 1.
doi:10.1016/S0022-2313(98)00019-2
http://dx.doi.org/10.1016/S0022-2313(98)00019-2
(c) Ukrainian Journal
of Physical Optics |