Ukrainian Journal of Physical Optics 


Number  3, Volume 4,  2003

Home page
 
 

Other articles 
in this issue


X,T-Phase Diagram of the Cu6PS5JxBr1-x Mixed Crystals. Optical, Dilatation and Ultrasonic Velocity Studies 

1Girnyk I., 2Kaynts D., 1Krupych O., 1Martunyuk-Lototska I., 1Vlokh R.

1Institute of Physical Optics, 23 Dragomanov Str., 70005 L’viv, Ukraine
2Uzhgorod National University, 46 Pidhirna Str, 88000 Uzhgorod, Ukraine

download full version

On the basis of studies of the domain structure and the temperature dependences of thermal expansion and the ultrasonic velocity, the x,T-phase diagram of Cu6PS5IxBr1-x mixed crystals is obtained. It is shown that all the compounds possess the first-order superionic (SI) phase transitions (PTs). Their temperatures are determined with the aid of thermal expansion measurements. The mixed crystals with the concentration x=0-1 possess the second-order structural PTs into a ferroelectric-ferroelastic (FF) phase. In the composition range x=0-0.75, the temperature of the structural PT slowly decreases and the line of TC crosses the line of TS approximately at x=0.75 (at heating) and at x=0.9 (at cooling). Due to a wide temperature hysteresis of TS in the range of dx=0.75-0.9, the sequence of PTs should depend on the particular temperature scan process – cooling or heating. In this range of the composition the polycritical point exists, in which the crossed curves of PTs separate the following phases: paraelectric-paraelastic-SI (the symmetry-43m), paraelectric-paraelastic-nonSI (-43m), ferroelectric-ferroelastic-SI (m) and ferroelectric-ferroelastic-nonSI (m). The coordinates of the polycritical point are determined as (x;T)=(0.76;217K).

Key words: ferroelastics, superionics, domain structure, thermal expansion, ultrasonic velocity
PACS: 42.70.Nq , 42.25.Lc, 77.90.+k, 81.30.-t

doi 10.3116/16091833/4/3/144/2003

1. Kuhs WF, Nitsche R, Scheunemann K, 1978. Acta Cryst. B34: 64.
2. Kuhs WF, Nitsche R, Scheunemann K, 1979. Mat.Res.Bull. 14: 241.
        doi:10.1016/0025-5408(79)90125-9 http://dx.doi.org/10.1016/0025-5408(79)90125-9
3. Fiechter S, Eckstein J, Nitsche R, 1983. J.Cryst.Growth 61: 275
        doi:10.1016/0022-0248(83)90363-9 http://dx.doi.org/10.1016/0022-0248(83)90363-9
4. Kuhs WF, Heger G, 1979. Fast Ion Transp. in Sol. Electrodes and Electrolites. Proc. Internat. Confer. 2: 233.
5. Haznar A, Pietraszko A, Studenyak IP, 1999. Sol.State Ionics 119: 31.
        doi:10.1016/S0167-2738(98)00479-2 http://dx.doi.org/10.1016/S0167-2738(98)00479-2
6. Studenyak IP, Kovac DS, Orlyukas AS, Kovac ET, 1992. Izv.AN SSSR 56: 86.
7. Kaynts D, Studenyak IP, Nebola II, Horvat AA, 2002. Ukr.J.Phys.Opt. 3: 267.
        doi:10.3116/16091833/3/4/267/2002 http://dx.doi.org/10.3116/16091833/3/4/267/2002
8. Studenyak IP, Vaytkus RA, Dyorday VS, et al, 1986. Phys.Sol.State (Sov.) 28: 2575.
9. Samulionis V, Valevicius V, Studenyak IP, Kovac DS, 1993. Ultragarsas (Ultrasonics) 25: 129.
10. Papadakis EP, 1967. J. Acoust. Soc. Amer. 42: 1045.
        doi:10.1121/1.1910688 http://dx.doi.org/10.1121/1.1910688
11. Smolensky GA, et al, 1985. Physics of Ferroelectric Phenomena. “Nauka”, Leningrad.

 
 


Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions