Home
page
Other articles
in this issue
|
X,T-Phase Diagram of the Cu6PS5JxBr1-x Mixed Crystals.
Optical, Dilatation and Ultrasonic Velocity Studies
1Girnyk I., 2Kaynts D., 1Krupych
O., 1Martunyuk-Lototska I., 1Vlokh
R.
1Institute of Physical Optics, 23 Dragomanov Str., 70005
L’viv, Ukraine
2Uzhgorod National University, 46 Pidhirna Str, 88000 Uzhgorod,
Ukraine
download full version
On the basis of studies of the domain structure and the temperature
dependences of thermal expansion and the ultrasonic velocity, the x,T-phase
diagram of Cu6PS5IxBr1-x mixed crystals is obtained. It is shown that all
the compounds possess the first-order superionic (SI) phase transitions
(PTs). Their temperatures are determined with the aid of thermal expansion
measurements. The mixed crystals with the concentration x=0-1 possess the
second-order structural PTs into a ferroelectric-ferroelastic (FF) phase.
In the composition range x=0-0.75, the temperature of the structural PT
slowly decreases and the line of TC crosses the line of TS approximately
at x=0.75 (at heating) and at x=0.9 (at cooling). Due to a wide temperature
hysteresis of TS in the range of dx=0.75-0.9,
the sequence of PTs should depend on the particular temperature scan process
– cooling or heating. In this range of the composition the polycritical
point exists, in which the crossed curves of PTs separate the following
phases: paraelectric-paraelastic-SI (the symmetry-43m), paraelectric-paraelastic-nonSI
(-43m), ferroelectric-ferroelastic-SI (m) and ferroelectric-ferroelastic-nonSI
(m). The coordinates of the polycritical point are determined as (x;T)=(0.76;217K).
Key words: ferroelastics, superionics, domain structure, thermal
expansion, ultrasonic velocity
PACS: 42.70.Nq , 42.25.Lc, 77.90.+k, 81.30.-t
doi 10.3116/16091833/4/3/144/2003 |
|
1. Kuhs WF, Nitsche R, Scheunemann K, 1978. Acta Cryst. B34: 64.
2. Kuhs WF, Nitsche R, Scheunemann K, 1979. Mat.Res.Bull. 14: 241.
doi:10.1016/0025-5408(79)90125-9
http://dx.doi.org/10.1016/0025-5408(79)90125-9
3. Fiechter S, Eckstein J, Nitsche R, 1983. J.Cryst.Growth 61: 275
doi:10.1016/0022-0248(83)90363-9
http://dx.doi.org/10.1016/0022-0248(83)90363-9
4. Kuhs WF, Heger G, 1979. Fast Ion Transp. in Sol. Electrodes and
Electrolites. Proc. Internat. Confer. 2: 233.
5. Haznar A, Pietraszko A, Studenyak IP, 1999. Sol.State Ionics 119:
31.
doi:10.1016/S0167-2738(98)00479-2
http://dx.doi.org/10.1016/S0167-2738(98)00479-2
6. Studenyak IP, Kovac DS, Orlyukas AS, Kovac ET, 1992. Izv.AN SSSR
56: 86.
7. Kaynts D, Studenyak IP, Nebola II, Horvat AA, 2002. Ukr.J.Phys.Opt.
3: 267.
doi:10.3116/16091833/3/4/267/2002
http://dx.doi.org/10.3116/16091833/3/4/267/2002
8. Studenyak IP, Vaytkus RA, Dyorday VS, et al, 1986. Phys.Sol.State
(Sov.) 28: 2575.
9. Samulionis V, Valevicius V, Studenyak IP, Kovac DS, 1993. Ultragarsas
(Ultrasonics) 25: 129.
10. Papadakis EP, 1967. J. Acoust. Soc. Amer. 42: 1045.
doi:10.1121/1.1910688 http://dx.doi.org/10.1121/1.1910688
11. Smolensky GA, et al, 1985. Physics of Ferroelectric Phenomena.
“Nauka”, Leningrad. |