Home
page
Other articles
in this issue
|
Generalized fractional Fourier transform in optical systems
Kozlovskii Yu.M.
Institute for Condensed Matter Physics of the NAS of Ukraine,1
Svientsitskii Str., 79011 Lviv, Ukraine
download full version
We investigate the properties of intensity distribution of the two optical
signals, which are shifted and modulated by a plane wave and correspond
to the generalized fractional Fourier transform (FFT). The results of analytic
and numerical calculations show the possibilities for designing new systems
for the processing of information. As an example, the correlator based
on the generalized FFT is considered. The domains of the generalized FFT
in the practicable optical systems are obtained and analyzed. A principal
possibility for the formation and recording of the interference pattern
is demonstrated for the case when the images of the FFT, starting from
the general form of the cascade matrix, are optically superimposed.
Key words: fractional Fourier transform, fractional correlation,
cross shifting, image forming rectangular slit, ambiguity function
PACS: 42.30.K, 42.30.V, 42.79, 42.15.E, 42.25.F
doi 10.3116/16091833/4/3/124/2003 |
|
1. Namias V, 1980. J. Instr. Maths Applics. 25: 241-265.
2. Ozaktas HM, Mendlovic D, 1993. Opt. Commun. 101: 163-169.
doi:10.1016/0030-4018(93)90359-D
http://dx.doi.org/10.1016/0030-4018(93)90359-D
3. Shovgenyuk MV, Kozlovskii YuM, 2001. Preprint ICMP-01-05U Lviv 42.
4. Shovgenyuk MV, Kozlovskii YuM, 2000. Dep. NAS Ukraine 6: 92-97.
5. Lohmann AW, 1993. J. Opt. Soc. Am. 10: 2181-2186
6. Mendlovic D, Ozaktas H, Lohmann A, 1995. J. Opt. Soc. Am. 34: 303-309
7. Granieri S, Arizaga R, Sicre E, 1997. Appl. Opt. 36: 6636-6645.
8. Lohmann AW, Mendlovic D, 1997. Appl. Opt. 36: 7402-7407.
9. Kuo CJ, Luo Y, 1998. Appl. Opt. 37: 8270-8276.
10. Jin S, Lee S, 2002. Opt. Commun. 207: 161-168.
doi:10.1016/S0030-4018(02)01499-2
http://dx.doi.org/10.1016/S0030-4018(02)01499-2
11. Weaver C, Goodman J, 1966. Appl. Opt. 5: 1234-1249.
12. Shovgenyuk MV, Kozlovskii YuM, Muravsky L, Fitio V, 2002. Ukr.
J. Phys. Opt. 3: 106-115
doi:10.3116/16091833/3/2/106/2002
http://dx.doi.org/10.3116/16091833/3/2/106/2002
13. Shovgenyuk MV, Kozlovskii YuM, 2001. Phys. Collection of Shevchenko
Sci. Soc. (Lviv), 4: 289-306.
14. Shovgenyuk MV, Kozlovskii YuM, 2000. Proc. 2nd Int. Smakula’s Symp.,
Ternopil. |