Ukrainian Journal of Physical Optics 


Number  4, Volume 3,  2002

Home page
 
 

Other articles 
in this issue


Optical Properties of Langbeinites 
III. Birefringence study at phase transitions and Raman scattering spectrums
Vlokh R., Vlokh O.V., Skab I., Girnyk I.

Institute of Physical Optics, laboratory of gradient optics, polarimetry and phase transitions, 23 Dragomanov Str., 79005, Lviv, Ukraine

download full version

The given part of this review paper is devoted to the collection and analysis of experimental results obtained by different researches that have investigated the temperature dependencies of birefringence as well as Raman scattering and IR spectrums of langbeinites at phase transitions. Given paper shows that optical methods of investigation of phase transitions particularly in langbeinites lead to obtaining important information about the temperature behavior of order parameter and lattice dynamic at phase transition. For example on the base of birefringence study of the isolated point of second order phase transition on the line of the first order was found on the concentration-temperature phase diagram of K2Cd2xMn2(1-x)(SO4)3 solid solutions. On the base of Raman scattering spectrums study one can conclude that phase transitions in langbeinites are of order-disorder type with ordering of the sulfate anions.

Key words: langbeinites, phase transition, Raman scattering, birefringence.

PACS: 42,33.SS-b.,77.80.B,78.20.Jq,78.30.-J

doi 10.3116/16091833/3/4/231/2002

References
1. Fousek J, 1979. Phys.Stat.Sol.(a) 55: 11.
2. Lines ME, Glass AM, 1977. Principle and Application of Ferroelectrics and Related Materials. Clarendon Press, Oxford.
3. Pozdeev VG, 1982. Crystallography 27: 1196.
4. Vlokh OG, Vlokh RO, Shopa YaI, 1987. Ukr.J.Phys. 32: 1040.
5. Bilecky IN, Vlokh RO, Otko AI, Shopa YaI, 1988. Ukr.J.Phys. 33: 689.
6. Lissalde F, Abrahams SC, Bernstein JL and Nassau K, 1979. J.Appl.Phys. 50: 845.
        doi:10.1063/1.325999 http://dx.doi.org/10.1063/1.325999
7. Brezina B, Rivera J-P, Schmid H, 1984. Ferroelectrics 55: 177.
8. Vlokh R, Vlokh OV, Skab IP, Romanyuk MO, 1989. Ukr.J. Phys. 43: 80.
9. Vlokh R, Czapla Z, Kosturek B, Skab I, Vlokh OV Girnyk I, 1998. Ferroelectrics 219: 243.
10. Konak C, Fousek J, Ivanov NR, 1974. Ferroelectrics 6: 235.
11. Vlokh R, Skab I, Guzandrov A, Mogylyak I, Smagliy S, Uesu Y, 2000. Ferroelectrics 237: 489.
12. Dvorak V, 1972. Phys. Stat. Sol. (b) 52: 93.
13. Dvorak V, 1974. Phys. Stat. Sol. (b) 66: K87.
14. Vlokh R, Skab I, Girnyk I, Czapla Z, Dacko S, Kosturek B, 2000. Ukr.J.Phys.Opt. 1: 103.
        doi:10.3116/16091833/1/2/103/2000 http://dx.doi.org/10.3116/16091833/1/2/103/2000
15. Brown R, Ross D, 1970. Spectrochimica Acta 26A: 1149.
16. Rabkin L, Torgashev V, Latush L, Brezina B, Shuvalov L, 1979. Crystallography 24: 487.
17. Kreske S, Devarajan V, 1982. J.Phys.C:Solid State Phys. 15: 7333.
        doi:10.1088/0022-3719/15/36/015 http://dx.doi.org/10.1088/0022-3719/15/36/015
18. Moiseenko V, Pozdeev V, Pastukhov V, 1983. Sol.Stat.Phys. 25: 2191.
19. Latush L, Rabkin L, Torgashev V, Yuzyuk Yu, Shuvalov L, Brezina B, 1984. Crystallography 29: 945.
20. Rabkin L, Rychkov G, Torgashev V, Yuzyuk Yu, Brezina B, 1985. Crystallography 30: 599.
21. Jayakumar VS, Hubert Joe I, Aruldhas G, 1995. Ferroelectrics 165: 307.
22. Sakai A, Inagaki T, Moriyoshi C, Itoh K, 2002. Ferroelectrics 272: 27.
        doi:10.1080/00150190211576 http://dx.doi.org/10.1080/00150190211576
23. Vlokh R, Skab I, Vlokh O, Uesu Y, 2001. Ukr.J.Phys.Opt. 2: 148.
        doi:10.3116/16091833/2/3/148/2001 http://dx.doi.org/10.3116/16091833/2/3/148/2001
24. Latush L, Rabkin L, Torgashev V, Shuvalov L, Brezina B, 1983. News of Acad.Sc.USSR 47: 476.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions