Home
page
Other articles
in this issue |
Optical tweezer system
with no fluorescent confocal microscope for trapping colloidal nanoparticles
1Nuansri R., 1Buranasiri
P., 1,2Limsuwan P. and 3Ou-Yang H.D.
1Department of Physics, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2Department of Physics, Faculty of Science,
King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
3Department of Physics, Lehigh University,
Bethlehem, Pennsylvania 18015, USA
Download this
article
Abstract. We describe two optical tweezer systems for the studies
of laser trapping of fluorescent colloidal nanoparticles (NPs). The first
one, conventional optical tweezer system widely used in laser trapping,
requires a fluorescent confocal microscope for observing trapped NPs. The
second system, with no microscope, is presented for the first time in this
work. The quantity of trapped NPs for this system is estimated from the
transmitted laser light intensity that passes through the fluorescent colloidal
NPs. Then the transmitted laser light is converted into the voltage signal
and measured by an oscilloscope. A small capillary tube to be filled by
the colloidal NPs is developed and used in the second system. This tube
can be used with light-sensitive cameras for which a danger of damaging
by high light intensities exists. Finally, we show that the results obtained
using the both tweezer systems are in good agreement.
Keywords: optical tweezers, laser trapping,
fluorescent particles, pluronic polymers
PACS: 42.66.-V
UDC: 535.214
Ukr. J. Phys. Opt.
19: 150-158
Received: 28.05.2018
doi: 10.3116/16091833/19/3/150/2018
Анотація. Описано дві системи оптичного
пінцета для вивчення лазерного захоплення
флуоресцентних колоїдних наночастинок
(НЧ). Перша або звичайна система оптичного
пінцета, яку широко застосовують для лазерного
захоплення, вимагає флуоресцентного конфокального
мікроскопа для спостереження захоплених
НЧ. Другу систему без мікроскопа вперше
представлено в цій роботі. Кількість захоплених
НЧ для цієї системи оцінено з інтенсивності
лазерного світла, яке проходить крізь флуоресцентні
колоїдні НП. Далі пройдене лазерне світло
перетворюється на сигнал напруги і вимірюється
осцилографом. Для другої системи розроблено
та використано невелику капілярну трубку,
наповнену колоїдними НЧ. Цю трубку можна
використовувати разом зі світлочутливими
камерами, для яких є загроза пошкодження
через високу інтенсивність світла. Нарешті,
продемонстровано добре узгодження результатів,
одержаних за допомогою обох систем пінцета. |
|
REFERENCES
-
Son M, Choi S, Ko H K, Kim H M, Lee S-Y, Key J, Yoon Y-R, Park I S and
Lee S W, 2016. Characterization of the stiffness of multiple particles
trapped by dielectrophoretic tweezers in a microfluidic device. Langmuir.
32: 922–927.doi:10.1021/acs.langmuir.5b03677
-
Yu Y, Qiu W, Chiu B and Sun L, 2015. Feasibility of multiple micro-particle
trapping – simulation study. Sensors. 15: 4958–4974. doi:10.3390/s150304958
-
Yan J, Skoko D and Marko J. F, 2004. Near-field magnetic tweezer manipulation
of single DNA molecules. Phys. Rev. E. 70: 011905. doi:10.1103/physreve.70.011905
-
Zhou Y, Basu S, Wohlfahrt K J, Lee S F, Klenerman D, Laue E D and Seshia
A A, 2016. A microfluidic platform for trapping, releasing and super-resolution
imaging of single cells. Sensors Actuators B: Chem. 232: 680–691. doi:10.1016/j.snb.2016.03.131
-
Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S, 1986. Observation of a
single-beam gradient force optical trap for dielectric particles. Opt.
Lett. 11: 288–290. doi:10.1364/ol.11.000288
-
Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure.
Phys. Rev. Lett. 24: 156–159. doi:10.1103/physrevlett.24.156
-
Wei M-T and Chiou A, 2005. Three-dimentional tracking of Brownian motion
of a particle trapped in optical tweezers with a pair of orthogonal
tracking beam and the determination of the associated optical force
constants. Opt. Express. 13: 5798–5806. doi:10.1364/opex.13.005798
-
Junio J, Ng J, Cohen J A, Lin Z F, and Ou-Yang H D, 2011. Ensemble method
to measure the potential energy of nanoparticles in an optical trap. Opt.
Lett. 36: 1497–1499. doi:10.1364/ol.36.001497
-
Fu J, Zhan Q, Lim M Y, Li Z and Ou-Yang H D, 2013. Potential energy profile
of colloidal nanoparticles in optical confinement. Opt. Lett. 38: 3995–3998.
doi:10.1364/ol.38.003995
-
Ling L, Huang L, Fu J, Guo H, Li J, Ou-Yang H D and Li Z-Y, 2013. The properties
of gold nanospheres studied with dark field optical trapping. Opt. Express.
21: 6618–6624. doi:10.1364/oe.21.006618
-
Junio J, Park S, Kim M-W and Ou-Yang H D, 2010. Optical bottles: A quantitative
analysis of optically confined nanoparticle ensembles in suspension. Solid
State Commun. 150: 1003–1008. doi:10.1016/j.ssc.2010.01.018
-
Junio J, Cohen J A and Ou-Yang H D, 2016. Osmotic bulk modulus of charged
colloids measured by ensemble optical trapping. J. Phys. Chem. B.
120: 9187–9194. doi:10.1021/acs.jpcb.6b05608
-
Berns M W, Wright W H, Tromberg B J, Profeta G A, Andrews J J and Walter
R J, 1989. Use of a laser-induced optical force trap to study chromosome
movement on the mitotic spindle. Proc. Natl. Acad. Sci. U. S. A. 86: 4539–4543.
doi:10.1073/pnas.86.12.4539
-
Zhong M.-C, Wei X.-B, Zhou J.-H., Wang Z.-Q and Li Y.-M, 2013. Trapping
red blood cells in living animals using optical tweezers. Nature Commun.
1768: 1–7. doi:10.1038/ncomms2786
-
Croker J C and Grier D G, 1994. Microscopic measurement of the pair interaction
potential of charge-stabilized colloid. Phys. Rev. Lett. 73: 352–355.
doi:10.1103/physrevlett.73.352
-
Mellor C D, Sharp M A, Bain C D and Ward A D, 2005. Probing interactions
between colloidal particles with oscillating optical tweezers. J. Appl.
Phys. 97: 103114. doi:10.1063/1.1900933
-
Li J-T, Caldwell K D and Rapoport N, 1994. Surface properties of pluronic-coated
polymeric colloids. Langmuir. 10: 4475–4482. doi:10.1021/la00024a016
-
Kim S Y and Zukoski C F, 2011. Role of polymer segment-Particle Surface
Interactions in Controlling Nanoparticle Dispersions in Concentrated Polymer
Solutions. Langmuir. 27: 10455–10463. doi:10.1021/la201704u
-
Ashkin A, 1992. Forces of a single-beam gradient laser trap on a dielectric
sphere in the ray optics regime. Biophys. J. 61: 569–582. doi:10.1016/s0006-3495(92)81860-x
-
Harada Y and Asakura T, 1996. Radiation forces on a dielectric sphere in
the Rayleigh scattering regime. Opt. Commun. 124: 529–541. doi:10.1016/0030-4018(95)00753-9
-
Fu J and Ou-Yang H D, 2014. Einstein’s osmotic equilibrium of colloidal
suspensions in conservative force fields. Proc. SPIE. 9164: 91641V. doi:10.1117/12.2062169
(c) Ukrainian Journal
of Physical Optics |