Home
page
Other articles
in this issue |
Structure and refractive
properties of LiNaSO4 single crystals
1,2Shchepanskyi P.A., 3Kushnir
O.S., 1Stadnyk V.Yo., 1Brezvin R.S. and 4Fedorchuk
A.O.
1Physics Faculty, Ivan Franko National University
of Lviv, 19 Dragomanov Street, 79005 Lviv, Ukraine 2Institute
of Physics, J. Dlugosh University in Czestochowa, Armii Krajowej 13/15,
PL-42-201, Czestochowa, Poland
3Faculty of Electronics and Computer Technologies,
Ivan Franko National University of Lviv, 107 Tarnavsky Street,
79017 Lviv, Ukraine
4Department of Inorganic and Organic Chemistry,
Lviv National University of Veterinary Medicine and Biotechnologies,
50 Pekarska Street, 79010 Lviv, Ukraine
Download this
article
Abstract. We report experimental results on the structure, refractive
indices and birefringence of LiNaSO4 (LSS) crystals. Spectral
behaviours of the refractive indices and the birefringence of LSS at the
room temperature, as well as temperature and baric dependences of the birefringence
are discussed. We examine the refractive indices and the birefringence
using Sellmeier and Lorentz–Lorenz formulae and energy-band structure
calculations. Unlike LiKSO4, the birefringence of LSS decreases
with increasing temperature, while accidental optically isotropic states
are absent under the normal conditions. A significant increase in the birefringence
of LSS, if compared with LiKSO4, is assumed to be linked with
asymmetry appearing in the local second-coordination environment of the
LSS structure.
Keywords: lithium–sodium sulphate, ABSO4
crystals, structure, refractive indices, birefringence, optical anisotropy
PACS: 78.20.Ci, 78.20.Hp, 81.40.Vw
UDC: 535.323, 535.5, 535.012, 548.0
Ukr. J. Phys. Opt.
19: 141-149
doi: 10.3116/16091833/19/3/141/2018
Received: 14.04.2018
Анотація. У цій праці наведено експериментальні
результати для структури, показників заломлення
та подвійного променезаломлення (ПП) кристалів
LiNaSO4 (ЛНС). Обговорено спектральну
поведінку показників заломлення та ПП
кристалів ЛНС за кімнатної температури,
а також температурні та баричні залежності
ПП. Показники заломлення описано на підставі
формули Лорентц–Лоренца, спрощеної формули
Зельмеєра і розрахунків енергетичної структури.
На відміну від LiKSO4, ПП кристалів
ЛНС зменшується зі зростанням температури,
а випадкові стани оптичної ізотропії за
нормальних умов відсутні. Значне зростання
ПП ЛНС, порівняно з LiKSO4, пов’язано
з асиметрією локального другого координаційного
оточення в структурі ЛНС. |
|
REFERENCES
-
Freiheit H-Ch, Kroll H and Putnis A, 1998. The trigonal-to-cubic phase
transition in LiNaSO4: An X-ray and calorimetric study. Zeit. Krist. 213:
575–584. doi:10.1524/zkri.1998.213.11.575
-
Morosin B and Smith D L, 1967. The crystal structure of lithium sodium
sulphate. Acta Cryst. 22: 906–910. doi:10.1107/s0365110x67001756
-
Pina C M and Woensdregt C F, 2001. Hartman–Perdok analysis of crystal
morphology and interface topology of β-LiNaSO4. J. Cryst. Growth. 233:
355–366. doi:10.1016/s0022-0248(01)01549-4
-
Karppinen M, 2015. Crystal structure, atomic net charges and electric moments
in pyroelectric LiNaSO4 at 296 K. Acta Cryst. B. 71: 334–341. doi:10.1107/s2052520615006836
-
Gundusharma U M, MacLean C and Secco E A, 1986. Rotating sulfate ion contribution
to electrical conductivity in Li2SO4 and LiNaSO4. Solid State Commun. 57:
479–481. doi:10.1016/0038-1098(86)90612-5
-
Chen R H, Tseng Chaw-Ming, Shern C S and Fukami T, 2010. Ionic conductivity
and dielectric relaxation studies of LiNaSO4 single crystal. Solid State
Ionics. 181: 877–882. doi:10.1016/j.ssi.2010.04.035
-
Schroeder K, Kvist A and Ljungmark H, 1972. The phase diagrams of the binary
systems Li2SO4–Na2SO4, Li2SO4–Rb2SO4, and Li2SO4–Cs2SO4. Zeit. Naturforsch.
A. 27: 1252–1256. doi:10.1515/zna-1972-8-917
-
Sahare P D and Moharil S V, 1990. Thermoluminescence in LiNaSO4. Radiation
Effects and Defects in Solids. 114: 167–172. doi:10.1080/10420159008213093
-
Gupta K K, Kadam R M, Dhoble N S, Lochab S P and Dhobl S J, 2018. On the
study of C6+ ion beam and γ-ray induced effect on structural and luminescence
properties of Eu doped LiNaSO4: explanation of TSL mechanism by using PL,
TL and EPR study. Phys. Chem. Chem. Phys. 20: 1540–1559. doi:10.1039/C7CP05835G
-
Junke K-D, Mali M, Roos J and Brinkmann D, 1988. NMR evidence for modification
of the crystal structure of β-LiNaSO4. Solid State Ionics. 28–30: 1329–1331.
doi:10.1016/0167-2738(88)90381-5
-
Shakhovoy R A, Rakhmatullin A, Deschamps M, Sarou-Kanian V and Bessada
C, 2016. Nuclear magnetic resonance study of sulfate reorientations in
LiNaSO4. J. Phys.: Condens. Matter. 28: 176003 (7 pp). doi:10.1088/0953-8984/28/17/176003
-
Teeters D and Frech R, 1982. Raman and infrared reflectivity spectra of
6LiNaSO4 and 7LiNaSO4. J. Chem. Phys. 76: 799–804. doi:10.1063/1.443049
-
Zhang M, Putnis A and Salje E K H, 2006. Infrared spectroscopy of superionic
conductor LiNaSO4: vibrational modes and thermodynamics. Solid State Ionics.
177: 37–43. doi:10.1016/j.ssi.2005.10.001
-
Lv W, Tong Z, Yin Y-M, Yin J and Ma Z-F, 2015. Novel nano-composites SDC–LiNaSO4
as functional layer for ITSOFC. Nano-Micro Lett. 7: 268–275. doi:10.1007/s40820-015-0038-4
-
Puppalwar S P and Dhoble S J, 2013. Development of high sensitive LiNaSO4:
Cu, Mg phosphor for TL dosimetry. J. Lumin. 137: 245–251. doi:10.1016/j.jlumin.2012.12.013
-
Abdulwahab A M, 2016. Fundamental absorption edge and normal dispersion
of β-LiNaSO4 single crystal. J. Phys. Chem. Solids. 99: 11–18. doi:10.1016/j.jpcs.2016.07.023
-
Stadnyk V I, Kushnir O S, Brezvin R S and Gaba V M, 2009. Temperature and
baric changes in the refractive indices of LiKSO4 crystals. Opt. Spectrosc.
106: 614–620. doi:10.1134/S0030400X09040237
-
Stadnyk V Yo, Romanyuk M O and Brezvin R S, 1997. Optical and electronic
parameters of RbNH4SO4 crystals. Ferroelectrics. 192: 203–207. doi:10.1080/00150199708216190
-
Rudysh M Ya, Brik M G, Khyzhun O Y, Fedorchuk A O, Kityk I V, Shchepanskyi
P A, Stadnyk V Yo, Lakshminarayana G, Brezvin R S, Bak Z and Piasecki M,
2017. Ionicity and birefringence of α-LiNH4SO4 crystals: ab initio DFT
study, X-ray spectroscopy measurements. RSC Adv. 7: 6889–6901. doi:10.1039/c6ra27386f
-
Shchepanskyi P A, Kushnir O S, Stadnyk V Yo, Fedorchuk A O, Rudysh M Ya,
Brezvin R S, Demchenko P Yu and Krymus A S, 2017. Structure and optical
anisotropy of K1.75(NH4)0.25SO4 solid solution. Ukr. J. Phys. Opt. 18:
187–196. doi:10.3116/16091833/18/4/187/2017
-
Henry C H, 1966. Coupling of electromagnetic waves in CdS. Phys. Rev. 143:
627–633. doi:10.1103/PhysRev.143.627
-
Kushnir O and Vlokh O, 1995. Propagation of light in birefringent optically
active crystals possessing linear dichroism. Proc. SPIE. 2648: 585–595.
doi:10.1117/12.226230
-
Yariv A and Yeh P. Optical waves in crystals: propagation and control of
laser radiation. New York: Wiley (2003).
-
Kushnir O S, Dzendzelyuk O S, Hrabovskyy V A and Vlokh O G, 2004. Optical
transmittance of dichroic crystals with ‘isotropic point’. Ukr. J.
Phys. Opt. 5: 1–5. doi:10.3116/16091833/5/1/1/2004
-
Bäumer Ch, Berben D, Buse K, Hesse H and Imbrock J, 2003. Determination
of the composition of lithium tantalate crystals by zero-birefringence
measurements. Appl. Phys. Lett. 82: 2248–2250. doi:10.1063/1.1566100
-
Akselrud L and Grin Y J, 2014. WinCSD: software package for crystallographic
calculations (Version 4). Appl. Cryst. 47: 803–805. doi:10.1107/S1600576714001058
-
Fedorchuk A O, Parasyuk O V and Kityk I V, 2013. Second anion coordination
for wurtzite and sphalerite chalcogenide derivatives as a tool for the
description of anion sub-lattice. Mater. Chem. Phys. 139: 92–99. doi:10.1016/j.matchemphys.2012.12.058
-
Stadnyk V I, Romanyuk M O, Kushnir O S, Brezvin R S, Franiv A V and Gaba
V M, 2010. Temperature and spectral changes in the refractive indices of
LiKSO4 crystals under uniaxial pressures. Int. J. Mod. Phys. B. 24: 6219–6233.
doi:10.1142/S0217979210057675
(c) Ukrainian Journal
of Physical Optics |