Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Structure and refractive properties of LiNaSO4 single crystals

1,2Shchepanskyi P.A., 3Kushnir O.S., 1Stadnyk V.Yo., 1Brezvin R.S. and 4Fedorchuk A.O.

1Physics Faculty, Ivan Franko National University of Lviv, 19 Dragomanov Street,   79005 Lviv, Ukraine 2Institute of Physics, J. Dlugosh University in Czestochowa, Armii Krajowej 13/15,   PL-42-201, Czestochowa, Poland
3Faculty of Electronics and Computer Technologies, Ivan Franko National   University of Lviv, 107 Tarnavsky Street, 79017 Lviv, Ukraine
4Department of Inorganic and Organic Chemistry, Lviv National University of   Veterinary Medicine and Biotechnologies, 50 Pekarska Street, 79010 Lviv,   Ukraine
 

Download this article

Abstract. We report experimental results on the structure, refractive indices and birefringence of LiNaSO4 (LSS) crystals. Spectral behaviours of the refractive indices and the birefringence of LSS at the room temperature, as well as temperature and baric dependences of the birefringence are discussed. We examine the refractive indices and the birefringence using Sellmeier and Lorentz–Lorenz formulae and energy-band structure calculations. Unlike LiKSO4, the birefringence of LSS decreases with increasing temperature, while accidental optically isotropic states are absent under the normal conditions. A significant increase in the birefringence of LSS, if compared with LiKSO4, is assumed to be linked with asymmetry appearing in the local second-coordination environment of the LSS structure.

Keywords: lithium–sodium sulphate, ABSO4 crystals, structure, refractive indices, birefringence, optical anisotropy

PACS: 78.20.Ci, 78.20.Hp, 81.40.Vw
UDC: 535.323, 535.5, 535.012, 548.0
Ukr. J. Phys. Opt. 19: 141-149
doi: 10.3116/16091833/19/3/141/2018
Received: 14.04.2018

Анотація. У цій праці наведено експериментальні результати для структури, показників заломлення та подвійного променезаломлення (ПП) кристалів LiNaSO4 (ЛНС). Обговорено спектральну поведінку показників заломлення та ПП кристалів ЛНС за кімнатної температури, а також температурні та баричні залежності ПП. Показники заломлення описано на підставі формули Лорентц–Лоренца, спрощеної формули Зельмеєра і розрахунків енергетичної структури. На відміну від LiKSO4, ПП кристалів ЛНС зменшується зі зростанням температури, а випадкові стани оптичної ізотропії за нормальних умов відсутні. Значне зростання ПП ЛНС, порівняно з LiKSO4, пов’язано з асиметрією локального другого координаційного оточення в структурі ЛНС.

REFERENCES
  1. Freiheit H-Ch, Kroll H and Putnis A, 1998. The trigonal-to-cubic phase transition in LiNaSO4: An X-ray and calorimetric study. Zeit. Krist. 213: 575–584. doi:10.1524/zkri.1998.213.11.575 
  2. Morosin B and Smith D L, 1967. The crystal structure of lithium sodium sulphate. Acta Cryst. 22: 906–910. doi:10.1107/s0365110x67001756 
  3. Pina C M and Woensdregt C F, 2001. Hartman–Perdok analysis of crystal morphology and interface topology of β-LiNaSO4. J. Cryst. Growth. 233: 355–366.  doi:10.1016/s0022-0248(01)01549-4 
  4. Karppinen M, 2015. Crystal structure, atomic net charges and electric moments in pyroelectric LiNaSO4 at 296 K. Acta Cryst. B. 71: 334–341.  doi:10.1107/s2052520615006836 
  5. Gundusharma U M, MacLean C and Secco E A, 1986. Rotating sulfate ion contribution to electrical conductivity in Li2SO4 and LiNaSO4. Solid State Commun. 57: 479–481.  doi:10.1016/0038-1098(86)90612-5 
  6. Chen R H, Tseng Chaw-Ming, Shern C S and Fukami T, 2010. Ionic conductivity and dielectric relaxation studies of LiNaSO4 single crystal. Solid State Ionics. 181: 877–882. doi:10.1016/j.ssi.2010.04.035 
  7. Schroeder K, Kvist A and Ljungmark H, 1972. The phase diagrams of the binary systems Li2SO4–Na2SO4, Li2SO4–Rb2SO4, and Li2SO4–Cs2SO4. Zeit. Naturforsch. A. 27: 1252–1256. doi:10.1515/zna-1972-8-917 
  8. Sahare P D and Moharil S V, 1990. Thermoluminescence in LiNaSO4. Radiation Effects and Defects in Solids. 114: 167–172. doi:10.1080/10420159008213093 
  9. Gupta K K, Kadam R M, Dhoble N S, Lochab S P and Dhobl S J, 2018. On the study of C6+ ion beam and γ-ray induced effect on structural and luminescence properties of Eu doped LiNaSO4: explanation of TSL mechanism by using PL, TL and EPR study. Phys. Chem. Chem. Phys. 20: 1540–1559. doi:10.1039/C7CP05835G
  10. Junke K-D, Mali M, Roos J and Brinkmann D, 1988. NMR evidence for modification of the crystal structure of β-LiNaSO4. Solid State Ionics. 28–30: 1329–1331. doi:10.1016/0167-2738(88)90381-5
  11. Shakhovoy R A, Rakhmatullin A, Deschamps M, Sarou-Kanian V and Bessada C, 2016. Nuclear magnetic resonance study of sulfate reorientations in LiNaSO4. J. Phys.: Condens. Matter. 28: 176003 (7 pp). doi:10.1088/0953-8984/28/17/176003
  12. Teeters D and Frech R, 1982. Raman and infrared reflectivity spectra of 6LiNaSO4 and 7LiNaSO4. J. Chem. Phys. 76: 799–804. doi:10.1063/1.443049
  13. Zhang M, Putnis A and Salje E K H, 2006. Infrared spectroscopy of superionic conductor LiNaSO4: vibrational modes and thermodynamics. Solid State Ionics. 177: 37–43. doi:10.1016/j.ssi.2005.10.001
  14. Lv W, Tong Z, Yin Y-M, Yin J and Ma Z-F, 2015. Novel nano-composites SDC–LiNaSO4 as functional layer for ITSOFC. Nano-Micro Lett. 7: 268–275. doi:10.1007/s40820-015-0038-4
  15. Puppalwar S P and Dhoble S J, 2013. Development of high sensitive LiNaSO4: Cu, Mg phosphor for TL dosimetry. J. Lumin. 137: 245–251. doi:10.1016/j.jlumin.2012.12.013
  16. Abdulwahab A M, 2016. Fundamental absorption edge and normal dispersion of β-LiNaSO4 single crystal. J. Phys. Chem. Solids. 99: 11–18. doi:10.1016/j.jpcs.2016.07.023
  17. Stadnyk V I, Kushnir O S, Brezvin R S and Gaba V M, 2009. Temperature and baric changes in the refractive indices of LiKSO4 crystals. Opt. Spectrosc. 106: 614–620. doi:10.1134/S0030400X09040237
  18. Stadnyk V Yo, Romanyuk M O and Brezvin R S, 1997. Optical and electronic parameters of RbNH4SO4 crystals. Ferroelectrics. 192: 203–207. doi:10.1080/00150199708216190 
  19. Rudysh M Ya, Brik M G, Khyzhun O Y, Fedorchuk A O, Kityk I V, Shchepanskyi P A, Stadnyk V Yo, Lakshminarayana G, Brezvin R S, Bak Z and Piasecki M, 2017. Ionicity and birefringence of α-LiNH4SO4 crystals: ab initio DFT study, X-ray spectroscopy measurements. RSC Adv. 7: 6889–6901. doi:10.1039/c6ra27386f 
  20. Shchepanskyi P A, Kushnir O S, Stadnyk V Yo, Fedorchuk A O, Rudysh M Ya, Brezvin R S, Demchenko P Yu and Krymus A S, 2017. Structure and optical anisotropy of K1.75(NH4)0.25SO4 solid solution. Ukr. J. Phys. Opt. 18: 187–196. doi:10.3116/16091833/18/4/187/2017
  21. Henry C H, 1966. Coupling of electromagnetic waves in CdS. Phys. Rev. 143: 627–633. doi:10.1103/PhysRev.143.627
  22. Kushnir O and Vlokh O, 1995. Propagation of light in birefringent optically active crystals possessing linear dichroism. Proc. SPIE. 2648: 585–595. doi:10.1117/12.226230 
  23. Yariv A and Yeh P. Optical waves in crystals: propagation and control of laser radiation. New York: Wiley (2003).
  24. Kushnir O S, Dzendzelyuk O S, Hrabovskyy V A and Vlokh O G, 2004. Optical transmittance of dichroic crystals with ‘isotropic point’. Ukr. J. Phys. Opt. 5: 1–5. doi:10.3116/16091833/5/1/1/2004
  25. Bäumer Ch, Berben D, Buse K, Hesse H and Imbrock J, 2003. Determination of the composition of lithium tantalate crystals by zero-birefringence measurements. Appl. Phys. Lett. 82: 2248–2250. doi:10.1063/1.1566100
  26. Akselrud L and Grin Y J, 2014. WinCSD: software package for crystallographic calculations (Version 4). Appl. Cryst. 47: 803–805. doi:10.1107/S1600576714001058
  27. Fedorchuk A O, Parasyuk O V and Kityk I V, 2013. Second anion coordination for wurtzite and sphalerite chalcogenide derivatives as a tool for the description of anion sub-lattice. Mater. Chem. Phys. 139: 92–99. doi:10.1016/j.matchemphys.2012.12.058
  28. Stadnyk V I, Romanyuk M O, Kushnir O S, Brezvin R S, Franiv A V and Gaba V M, 2010. Temperature and spectral changes in the refractive indices of LiKSO4 crystals under uniaxial pressures. Int. J. Mod. Phys. B. 24: 6219–6233. doi:10.1142/S0217979210057675
(c) Ukrainian Journal of Physical Optics