Ukrainian Journal of Physical Optics 


Number  3, Volume 6,  2005

Home page
 
 

Other articles 
in this issue


Crystal Optical Properties of Inhomogeneous Plates and the Problems of Polarization Tomography of Photoelastic Materials
1Kushnir O., 1Nek P., 2Vlokh R., 3Kukhtarev N.

1Electronics Department, Lviv National University, 107 Tarnavski St., 79017 Lviv, Ukraine
2Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine
3Physics Department, Alabama A&M University, Normal, AL 35762

download full version

Using the Jones matrix formalism, crystal optical properties of inhomogeneous material consisting of a pile of weakly birefringent plates are analysed in relation to the cell model adopted in polarization tomography of 3D dielectric tensor field in photoelastic media. It is shown that the material manifests in general an “apparent” optical gyration caused by different orientations of the plates. Relations between the polarimetric parameters and the dielectric tensor components are ascertained for the case of weak optical anisotropy.

Key words: photoelasticity, 3D tensor field tomography, birefringence, gyration, Jones matrices.

PACS: 07.60.Fs, 42.25.Lc, 42.30.Wb

doi 10.3116/16091833/6/3/87/2005

1. Andrienko YuA, Dubovikov MS, Gladun AD, 1992. J. Opt. Soc. Amer. A 9: 1765.
2. Berezhna SYu, Berezhnyi IV, Vlokh OG, 1994. Proc. 10th International Confer. on Experimental Mechanics (Lisbon, Portugal): 431.
3. Puro A, 1998. Inverse Problems 14: 1315.
        doi:10.1088/0266-5611/14/5/015  http://dx.doi.org/10.1088/0266-5611/14/5/015
4. Aben H, Errapart A, Ainola L, Anton J, 2004. Proc. SPIE 5457: 1.
        doi:10.1117/12.543778  http://dx.doi.org/10.1117/12.543778
5. Kubo H, Nagata R, 1979. J. Opt. Soc. Amer. 69: 604.
6. Shurcliff W, 1965. Polarized light. Moscow, Mir.
7. Yariv A, Yeh P, 1984. Optical waves in crystals. New York, Wiley.
8. Azzam RMA, Bashara NM, 1988. Ellipsometry and polarized light. Amsterdam, North-Holland.
9. Kushnir OS, Lokot LO, Lutsiv-Shumski LP, Polovinko II, Shopa YI, 1999. Phys. Stat. Solidi (b) 214: 487.
       doi:10.1002/(SICI)1521-3951(199908)214:2<487::AID-PSSB487>3.0.CO;2-U http://dx.doi.org/10.1002/(SICI)1521-3951(199908)214:2<487::AID-PSSB487>3.0.CO;2-U
10. Jones RC, 1948. J. Opt. Soc. Amer. 38: 671.
11. Kushnir OS, Dzendzelyuk OS, Grabovski VA, Mikhailik VB, 2000. Proc. SPIE 4148: 137.
        doi:10.1117/12.388436  http://dx.doi.org/10.1117/12.388436
12. Vlokh OG, 1984. Spatial dispersion phenomena in parametric crystal optics. Lviv, Vyshcha Shkola.
13. Landau LD, Lifshitz EM, 1960. Electrodynamics of continuous media. New York, Pergamon.
14. Aben HK, 1975. Integrated photoelasticity. Tallinn, Valgus.
15. Kushnir OS, 1996. J. Phys.: Condens. Matter 8: 3921.
        doi:10.1088/0953-8984/8/21/017  http://dx.doi.org/10.1088/0953-8984/8/21/017
16. Kushnir OS, 2004. J. Phys.: Condens. Matter 16: 1245.
        doi:10.1088/0953-8984/16/8/009  http://dx.doi.org/10.1088/0953-8984/16/8/009
17. Galatola P, 1994. J. Opt. Soc. Amer. A 11: 1332.
18. Oldano C, Rajteri M, 1996. Phys. Rev. B 54: 10273.
        doi:10.1103/PhysRevB.54.10273  http://dx.doi.org/10.1103/PhysRevB.54.10273
19. Agranovich AM, Ginzburg VL, 1984. Crystal optics with spatial dispersion, and excitons. Berlin, Springer.
20. Vlokh R, Krupych O, Maksymuk O, 2003. Ukr. J. Phys. Opt. 4: 41.
        doi:10.3116/16091833/4/1/41/2003  http://dx.doi.org/10.3116/16091833/4/1/41/2003

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions