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1.Introduction

One of the main sources of quiescent optical solitons is the nonlinearity of chromatic dispersion
(CD) [1-6]. Another source involves considering fourth-order dispersion [7-9] rather than CD. In
this case, quiescent optical solitons cannot be analytically calculated, but they can be observed
numerically within the model. These solitons have been extensively studied in optical fibers using
various models and multiple integration schemes based on Lie symmetry [10-12]. The research
has also been successfully extended to magneto-optic waveguides with Kudryashov’s
generalized quintuple-power law and nonlocal nonlinearity, which features nonlinear chromatic
dispersion [13]. This paper will examine the evolution of quiescent optical solitons in magneto-
optic waveguides with Kudryashov’'s proposed self-phase modulation (SPM) structure and
generalized temporal evolution.
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This work employs three integration algorithms for retrieval. They are the enhanced
direct algebraic algorithm [14,15], the new mapping method [16], and the extended auxiliary
equation approach [17,18]. Collectively, these approaches reveal a full spectrum of optical
solitons, as shown in the paper. The parameter constraints for the existence of such
stationary optical solitons in magneto-optic waveguides are also provided. The numerical
schemes offer a visual representation of these solitons. Details of the three algorithms and
their successful application in retrieving soliton solutions to the model are discussed in the
rest of the paper.

In parallel with the development of physical models, considerable effort has been
devoted to the construction of exact travelling-wave solutions for nonlinear Schrédinger-
type equations with nonlinear dispersion. Y. Geng and J. Li considered a nonlinearly
dispersive Schrodinger equation and, by means of dynamical systems theory, established the
existence of solitary patterns, compactons, kink-type waves, and various periodic structures
[19]. Z. Yan, on the other hand, introduced a generalized nonlinear Schrédinger equation
with nonlinear dispersion and reported envelope compactons and solitary pattern structures
together with conserved quantities, thereby clarifying the influence of nonlinear dispersion
on the underlying wave dynamics [20]. This viewpoint was extended to coupled systems,
where new exact solution structures were obtained for coupled Klein-Gordon equations and
a higher-dimensional generalized coupled NLS model, again emphasising the role of
nonlinear dispersion [21].

For perturbed NLS equations, attention has also been given to Kerr-type nonlinearities
and systematic solution methods. Z. Zhang et al. conducted a qualitative analysis of a
perturbed NLS equation with Kerr law nonlinearity and derived traveling-wave solutions by
exploiting the related phase-plane structure [22]. In a follow-up study on the same model,
new families of exact solutions were recovered using a modified trigonometric series method
[23]. Along a different line, Sirendaoreji developed the auxiliary equation method, where
exact solutions of an appropriate first-order nonlinear ordinary differential equation are
used to construct traveling-wave solutions for quadratic and cubic nonlinear Klein-Gordon
equations; this approach has since become a versatile tool for a broad class of nonlinear
evolution equations [24]. Taken together, these works offer a comprehensive mathematical
framework for addressing nonlinear dispersion and multi-power nonlinearities in optical
soliton models.

More recently, several studies have explored highly dispersive solitons in models that
include additional physical effects such as stochastic perturbations, concatenated dynamics,
and complex refractive-index structures. M. Ekici and C.A. Sarmasik analyzed the stochastic
concatenation model, combining NLSE-, LPD-, and Sasa-Satsuma-type contributions in the
presence of multiplicative white noise, and derived several analytical solutions, including
multi-wave, breather, periodic cross-kink, and Peregrine-like rational structures in optical
fibers [25]. A. ]. M. Jawad and M. ]. Abu-AlShaeer obtained highly dispersive optical solitons
for NLS-type equations with cubic and cubic-quintic-septic nonlinearities using two distinct
analytical methods [26]. At the same time, Jihad and Almuhsan evaluated various dispersion-
compensation strategies for impairment mitigation in optical fiber communication systems
[27]. Within the same context of highly dispersive dynamics, Y. S. Ozkan and E.Yasar
proposed three efficient schemes for a perturbed stochastic Fokas-Lenells equation,
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successfully recovering a broad range of highly dispersive optical solitons [28]. In a related
but different physical setting, Li et al. constructed bright and dark solitons in a (2+1)-
dimensional spin-1 Bose-Einstein condensate, demonstrating how similar nonlinear wave
mechanisms emerge in ultra-cold atomic systems [29].

The present work builds on these developments by focusing on quiescent optical
solitons in magneto-optic waveguides, governed by a generalized nonlinear Schrédinger
equation with Kudryashov’s first form of nonlinear self-phase modulation and nonlinear
chromatic dispersion. In contrast to the above studies, we recover quiescent solitons for this
magneto-optic setting for both linear and generalized temporal evolutions, using a
combination of auxiliary-equation, mapping, and algebraic schemes tailored to Kudryashov-
type nonlinear refractive-index laws.

2.Mathematical analysis
The dimensionless form of the nonlinear Schrédinger equation (NLSE) with Kudryashov’s

law having nonlinear chromatic dispersion and generalized linear temporal evolution is
written as:

@voljaa), ) |2" " |

The dimensionless form of the NLSE in magneto-optic waveguides with Kudryshov’s law

b3|q| +b4|q| =0, (1)

having generalized temporal evolutions and nonlinear CD is written as:

b _
| |%n | | b3|q| +b4|q|
i(a!), +ay(faf'a) + " al=0yr! @
R P | d3|r| +d4|r|
I | | ]
and
| |2n | | b7|r| +b8|r|
i(rl)t +a, (|r|P rl)xx J ) N =Q,q!, (3)
oo+ dy g +dg g
q” ]

where ¢(x,t) and r(x,t) are complex-valued functions that represents the wave profiles

with i= +/-1. The first terms in Egs. (2) and (3) represent the generalized temporal

evolutions with parameter />1. The constants q; ( j=1,2) are the coefficients of generalized
nonlinear CD with nonlinearity parameter p>0. The constants Q; for (j=1,2) are the

coefficients from the magneto-optic waveguides effect. Here, x and t denote the spatial and
temporal coordinates, respectively. The functions q(x,t) and r(x,t) represent the slowly

varying complex envelopes of the optical fields propagating through the waveguide. The
parameters (b1, by, .., bg) and (di, d>, ..., ds) are real constants associated with the nonlinear
coefficients of Kudryashov’s law, which describe higher-order nonlinear effects such as self-
phase and cross-phase modulation. The exponent (n>0) determines the nonlinear refractive
index order, influencing the intensity dependence of the nonlinearity. The constants Q; and
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@, correspond to the magneto-optic coupling coefficients that arise from the magneto-optic

effect - a phenomenon where an external magnetic field alters the optical properties of the
medium, leading to coupling between the two field components q and r. This effect

manifests as magnetically induced birefringence or Faraday rotation, enabling energy
transfer between the coupled wave modes.
To get quiescent solitons of Egs. (2) and (3), we consider the wave transformation:

q(xt)=¢y(x)ei%t,
r(x,t)=g(x)eir,

where ¢;(x)(j=1,2) are real-valued functions of x, while 1 is a constant representing the

(4)

frequency. Substituting (4) into Egs. (2) and (3), we have
—IAg{+ay (p+1)| (p+1-1)g0 " g2+ 40" gy |

+|:;21n +Z_1+b3¢1 +b4¢2"+(ZT+ZZ +d3¢5'+d4¢22"}¢1—Q1¢z ®)
and
~IAg) +a, (p HD)] (p+1-1)g8" 22 + g5 15 |
{ 5, + bygf + bg3" + +d_+d7¢1 [+ dgdf }4521:0245{- )
#' o
Now, let’s assume:
bo(x) =1 (), (7)
where 7 is a nonzero constant. Egs. (5) and (6) become:
20 (12 +01Q )¢l + am2n (p+1)(p+1-1) 2212 1 aman (p + 1) g2 P+ ®

+n2n (nndy + by ) g3+ +n2n (n2nd, + by )+ +nn(dy +nnby )+ +(n2nby +dy )¢l =0,
and
—n2n (A +Q, ) g2 + amnp+l (p+1)(p +1-1) g2 P+ 2
+an2np+ (p+1) gy ¢2n+p+1 Lypl+2n (nnb7 + d7) 3n+l 9)
47pl+2n (lenbg + dg) Antl | plin (d677” + bs) I+n (d5772" + b5)¢{ =0.
Eqgs (8) and (9) are equivalent under the constraint conditions:
Do+nQy  a;  ndz+bg nand, + b, d, +nnb, n2nb, +d;

In order to solve Eq. (8), we choose p =n, then Eq. (8) simplifies to
n2 (12 +n1Q; )¢ +an2n (n+1)(n+1-1)¢2¢3"2 + a2 (n+1) g1 1)

021 (nnds + by ) ¢ +n2n (n2ndy + by )" +nn (dy + by )gft +(n2nby +dy ) =
Balancing ¢;¢f"1 with ¢{" in Eq. (11), gives N =Z, where N is the balance number of Eq.
n

(11). Since the balance number is not integer, then we take into consideration the
transformation

[y ()], (12)
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where y(x) is a new function of x. Substituting Eq. (12) into (11), we get
woy"+ Aty 2+ Biy 8+ Cy 6 + Dy 4 + Eyyw2 + F =0, (13)
where

4 o-nt2l p ="(le”d4+b4) =”(Tl”d3+b3)
Yoon Y 2a(nl) TN 2ay(nkl) ]
n(12+nlQ;) £ _n(by+dnn) F _n(by +dyin~2)
2a,(n+1) "t 2a,(n+1) Y 2a(n+l)

1 =
In the next three sections, we will solve Eq. (13) by using the following methods.

3.Enhanced direct algebraic approach
Balancing w5y " and w8 in Eq. (13), then we get N =1. Since the balance number obtained
from Eq. (11) is non-integer, the transformation in Eq. (12) is employed to reformulate the
equation into a form with an integer balance number, thereby enabling the standard
balancing algorithm to be used. According to this method, we have the formal solution as
[14]:
v (x) =Ko+ K,0(x) + —2,
0(x)

where K(,K; and L; are constants to be determined, while 0(x) satisfies

IZ+K? =0, (14)

4
0'2(x)= Z,z'jﬁi (x) (15)

j=0
where 7;(j=0,1,2,3,4) are constants provided that 7, # 0 . Substituting (14) along with (15)

into Eq. (12) and equating all the coefficients of 6!(x),(I=0,£1,%2,...,+8) to zero, we obtain
a system of algebraic equations, omitted here for simplicity. By solving this system of
equations with the assistance of Mathematica or Maple, we obtain the following results:
Case-1:If ty =7, =73 =0, then we have the following results:

The relations K, =K, and K; =K; simply reflect identities, implying that both K, and K;
are arbitrary free parameters in the solution, along with the following constraint conditions:

A1=—%, C,=-4B,K2, D, =3B,K}, E =F =0. (16)

When 7, > 0,7, <0, we have the bright soliton solutions:
2

and
2
r(x,t)zn[l(o +x/§Kosech(2K0\/BTx)Jnei/1t’ (18)
provided B; >0.The magneto-optic parameter @, is absent explicitly in Eqgs. (17) and (18);
n(12+nlQ;)

however, it contributes indirectly via the relation D; =— which determines B;.

2a,(n+1)

Thus, the soliton profiles remain influenced by the magneto-optic effect.
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2
Case-2:1f 7, = 4T—2,r1 =713 =0, then we have the following results:
T4

Result-1:

Here, K, and L; are arbitrary free parameters in the solution, along with the following

constraint conditions:
3 L%z'4 2L211'4
A =-=, B1=—2Kg, C1=—K§ , Dy=E;=F =0.

When 7,(0,74)0, we have the singular soliton solutions:

q(x,t)= {KO {1+coth

(5
r(x.t) =n{K0 {1 +c0th(lll\/a

and the dark soliton solutions

J
q(xt)= {K0{1+tanh M_ }

r(xi)=n{Kb{1+tanh[—%%;£xJ}} eilt,

In this case, the constraint D; =0 together with the general relation D; =-

(19)

(20)

(21)

(22)

(23)

n(12+nlQ;)
2a,(n+1)

implies IA+nlQ; =0, so the magneto-optic contribution 7!Q; is exactly cancelled by the

term IA, and the resulting soliton solutions no longer contain @; explicitly. This occurs in

the solutions (20)-(23) as well as in the subsequent solutions (25)-(28).

Result-2:
K 2 . 8I37,
K3

)’

along with constraint conditions:
4,--3, p - 8t o 32
2 K¢ K3

When 7,(0,7,4)0, we have the dark soliton solutions:

S}

2 n
K, {tanh[u}{‘/axJ + 1}
q(x’t)z 0 eiit,
2tanh Mx
Ky

, D1=E1=F1:O_

(24)

(25)
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SIS

Ky

2L
2tanh 17%)(
Ky

Ko{tanh[%ﬁx}l}z

eilt, (26)

r(xt)=n

and the singular soliton solutions

SN

2
K, {cotr{ ZL}{‘/ZXJ - 1}
0 )
eilt, (27)
2c0th(2L1‘/axJ
0

K

q(x,t)=

SN

K {coth[%ﬁ Jl}

Ky

r(xt)=n
2coth[2L1 "”‘xj
0

eiit, (28)
K

Case-3: When 7, =73 =0, then we have the following results:

m2(1-m2)t3

(2m2-1)’z,
0<m<1,then we get

D If 7y = . Here m is the elliptic modulus of the Jacobi elliptic functions, with

2K2T4
Ll = 0, Tz = —K—Oz,
1
along with constraint conditions:
2K2 3K47,(8m4 —8m2 +1
Al=_§, B, = Tq C, = 04 D, = 07 ) E,=F, =0. (29)

2 2K}’ K? 2K2(2m2 —1)?

Now, the Jacobi elliptic function solutions of Egs. (2) and (3) are listed as

2
q(”){KO{“%C“[%\/‘J‘*_NJH"e"“r (30)
2
r(x,t)=n{l(0 {1——%cn[§—2 /——zrjzr‘*_liHnem_ (31)

Solutions (30) and (31) represent periodic wave solutions expressed in terms of Jacobi

and

elliptic functions, which reduce to bright solitons in the limit m — 1~

2
Q(X,t)=|:l(0 {1—«/§sech[1{0]{$XJHn eilt, (32)
1

and
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2
r(x,t)=fl{l(0 {1—\/§sech[1{0K—_ZT4XJHn eilt, (33)
1

n(M + r]IQl)

rovided 7, <0. Since in general D, =-
P * & ! 2a;(n+1)

, equating this with the explicit

expression of D; in (29) yields a linear relation between A and @, ; therefore, the phase
parameter A, and hence the solutions (30)-(33), depend on the magneto-optic parameter Q,
through this relation.

(ID If 7, =((1—m2)722)/((2_m2)zf4) and 0<m<1, then we get

2(m2-1)7,K?

Kl = 0, T4 =
5 (m2 - 2)°
along with constraint conditions:
3 Tz SK(%TZ m4
A =-3, Bj=—%, Ci=—1, Dy=————, E;=F =0. (34)
2 4K§ 4(m2 - 2)

Now, the Jacobi elliptic function solutions of Egs. (2) and (3) are defined as:

L2mz —
a(x6)=| Ko Kovam? —2 eirt, (35)
mdym2z—2dn| ,[-—2_x
m2-2
and
n
L2mz —
r(xt)=n|Ko- Kovam? -2 eilt, (36)
mx/m2—2dn( D xj
m2 -2

provided 7,>0. Solutions (35) and (36) represent periodic dn-type Jacobi elliptic wave
solutions of Egs. (2) and (3).

272

() If 7, = D and 0<m<1,thenwe get

(m2 + 1) Ty
Result-1:

2K2T4
Ll = 0, Tz = —K—Oz,
1
along with constraint conditions:
2K? 3K, (m* -2m2 +1
A=-3, =Tt ¢ ="04 p - 07( . ), E, =F =0. (37)
2 2K§ K{ 2K%(m2 +1)

Now, the Jacobi elliptic function solutions of Egs. (2) and (3) are enumerated as:

2
2 KO 2T4 n
x,t)=| K,+mK sn| —,[——x || eiit, 38
alxt) {0 Vmz+1 [Kl m2+1 (38)

and
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27,

(39)

2
2 sn Ky ——X neW.
m2+1 K, Vm2+1

Solutions (38) and (39) correspond to periodic wave solutions described by the Jacobi

r(xt)= n{KO +mK

elliptic sn-function, which reduce to dark soliton solutions in the limit m — 1-.

2
q(x,t)= {KO +K, tani{l((}(—\/axﬂn eilt,
1

(40)

and

2
r(xt)= r{KO +K, tani{KOK—\/axﬂn eilt, (41)
1
provided 7, >0.
Result-2:
2K3Zm
T L (m2+6m+1)’
_ (m2+6m+1)IZ (m2+1)z,
2 2K2m?

1

’

along with constraint conditions:
3 g TA‘L%(m2+6m+1)2
8Kym?
D — 3(m#* —4m3 +6m2 —4m+1)I37,
! 8m?
Now, the Jacobi elliptic function solutions of Egs. (2) and (3) are defined as:
q(x,t)=

2
[ 2
\/_ s (Ll 214(m +6m+1) J

2Kgm

_ 3 (m2+em+1)°
2Kgm?

’ 1

’

(42)

SN

Ko (43)

L./2 2+6m+1
+ m2+6m+1sn( 1 T4(m m )

2Kym

XJ+¢5

and
r(xt)=

Jafiaaiisn(hvzﬂﬁ"ﬂ+6m+1)

2Ky m

2K m
K, 0

=

2
L. [2t,(m2+6m+1
x/imsn( 1 4( )XJ

L2 2+6m+1
+ m2+6m+1sn( 1 T4(m m )

2Kym

l

XJ+¢§

2Kym

2
Vﬁﬁfle?IIsn(L1VZT4On +6”’+1)XJ

eilt’

S

eilf_

(44)
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Solutions (43) and (44) describe periodic Jacobi elliptic wave solutions of the sn-type, which
reduce to the same dark solutions as (25) - (26) when the elliptic modulus approaches
m—1-.

Case-4: When 1) =7, =0, then we have the following results

L=0, 7,= Ko (4K o4 —3K,73)

2K? '
along with constraint conditions:
A=-3 B =Tt (= Ko (8K, —3K1T3)’
2 2K? 4K2 )
D, = 3K3 (2K 74 —K173)’ E,=F, =0,
4K?

When 7, >0,74 >0 and K, (4K,7, —3K;73) <0, we have the soliton solutions

q(x,t)=

2
2K, (4K yr, —3K ’ "
K0(4K074—3K173)SECh(1\/ ol 0;42 %) J (46)
Ko+ ( ) gilt,
1 | 2Ky (4K,r, —3KqT
2\/—21(0(41{01'4—3K1r3)r4tanh[4 \/— 0 OK‘% 137 % |+2K 14
r(xt)=
2
2K (4K,t, —3K,73) ’ "
K0(4‘K0T4—3K1T3)Sech(i\/ 0 OK‘; 173 J (47)
n Ky + ( ) it
1 | 2Ky(4K o4 —3KqT
2\/—21(0(41(01'4—3K1r3)r4tanh(4 \/— 0 01(12 137 % |+2K 14
and
q(x,t)=
2
2K (4K o, —3K,73) ’ "
Ko(4Kyr4 —3K, 73 Csch(1 01720 42 13 J (48)
K. — 4 K ei}ut
0 2K, (4K oty —3K,73) '
1 f—
2J-2K (4K 4 —3K;73) 74 COL Z 0 0,(42 137 % |+2K 14
1
r(xt)=
2
2K (4K o, —3K,73) ’ "
Ko(4Kyr4 —3K, 73 CSCh(}} 0 01(42 13 J (49)
Ko~ 2K, (4K oty —3K,73) o
1 Ty — T
2J-2K, (4K 4 —3K73) 74 coti{4 0 OK‘% 13 XJ+2K1‘L'3

02010
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Solutions (46)-(49) describe mixed bright-dark soliton solutions, where the sech
component generates a bright-type profile, and the tanh/ coth component produces a dark-
type modulation.

(II) When 7, > 0,73 # 0 and K, (4K,7, —3K;73) <0, we have the soliton solutions

q(x,t)=

2 n
1 | 2K, (4Kqr, —3Ky73
K0K1(4K0r4—3K1r3)r3sech(4 \/_ o ), 50)
Ky + eilt
2 ’
1 | 2K,(4K,r, —3KqT
ZK%T32+K0(4KOT4—3K1T3)T4{1—tanh(4\/_ o 0]{12 1 3)X
r(xt)=
2
2 n
1 | 2K, (4Kqr, —3Kq73
K0K1(4K0r4—3K1r3)r3sech(4 \/_ o ), 51
n K0+ — (41( = ) 5 eilt’
1 Ty — T
zx%r32+xo(4xor4—3K113>r4{1_tanh[4 [l S J}
and
q(x,t)=
2 n
1 |_2K,(4Kqr, —3Kq73
KoK, (4Kt —3K 73)T5eschl = |- > )X 52)
K 4 Ky "
0~ 5 el t’
1 | 2Ky(4K,r, —3KqT
ZK%T32+K0(4KOT4—3K173)T4{1—00t'{4\/— of OKA;Z 1%3)
r(xt)=
2
2
1 |_2K,(4Ko7, —3Ky73) "
KoK, (4Kt —3K 73)75eschl = |- ! x 53)
4 K? ‘
n KO_ K (41( " ) 5 ellt_
1 Ty — T
ZK%T:)%+K0(4K0T4—3K113)T4{1_C0t"(4\/_ 0 OK‘% 1°3 XJ}

Solutions (50)-(53) describe straddled bright-dark soliton solutions, where the sech term
generates a bright component while the tanh or coth term produces a dark or anti-dark
component.

4.New mapping method
Balancing w5y " and w8 in Eq. (13), then we get N=1. According to this method [16], we
have the formal solution as:

w(x)=Ly+ L f(x)+Lyf2(x), L#0, (54)

while f (x) satisfies the following first order ordinary differential equation (ODE):

Ukr. J. Phys. Opt. 2026, Volume 27, Issue 2 02011
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f'2(x)=r+pf2(x)+%qf4(x)+%sf6(x), s#0, (55)
where Ly,L;,L,,r,p,q, and s are arbitrary constants. Substituting (54) along with (55) into

Eq. (12) and equating all the coefficients of fk (x)[f’(x)]j (k=0,1,2,...,16,j=0,1), to zero,

we obtain a system of algebraic equations, omitted here for simplicity. Here, the symbols r
and g appearing in Eq. (55) denote constant parameters of the auxiliary ordinary differential
equation and should not be confused with the functions r ( x, t ) and q (x, t) introduced
earlier in Egs. (2) and (3).

By solving this system of equations with the assistance of Mathematica or Maple, we obtain
the following results:
_1é6p?

2
Case-1: If s=3i r 3Loq

,r= , then we have the following results L; =0, p=—-—, along with
16p 27q 4L,
constraint conditions:
3 q Lyq
A =-=, B;y=- , C,=——~, D,=E,=F, =0, 56
1 ) 1 6L,L, 1 2L, 1=b1=0 (56)

where L; and L, are arbitrary constants.
From (54), (56), and f;(x)— f,(x) of step 4 of the new mapping approach obtained in [8],

we get the bright soliton solutions:

31,

q(x,t): eilt, (57)
4cosh? [E Lo XJ -1
2\ 1,
and
-2
n
L
r(xt)=n S eiit. (58)
4cosh? [E —Loqxj -1
2\ L
We also have the bright soliton solutions:
L
q(x,t): 3 0 eilt, (59)
4cosh? [E —Loqu -3
2 \/ L, |
and
L
F(x,t)= 3Ly eiit, (60)

n
4cosh? [E —Loqu -3
2\ L,
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provided qlLyL, <0 and ¢ ==1. In this case, the constraint D; =0 together with the general

n(M + r]lQl)

relation D; =—
2a,(n+1)

implies that the resulting soliton solutions no longer contain Q;

explicitly. This occurs in solutions (57)-(60).
3q2

Case-2:If s= F,r =0, then we have the following results:
p
Lyq
L, =0, — L,
1 p 2L,
along with constraint conditions:
L 33
2 4LL, 2L, 4L,

where Ly and L, are arbitrary constants. From (54), (61),and f5(x)— fs(x) of step 4 of the

new mapping approach obtained in [8], we get the dark soliton solutions:

q(x,t):{—LOtanh[E\/%xﬂn giAt, (62)
2
r(x,t)=n{—L0tani{g\/%xﬂnem_ (63)

We also have the singular soliton solutions:

q(x,t){—LOcOt{g \/%xﬂnem, (64
2
r(x,t)=f{—L0C0th[e \/%xﬂnem, (65)

provided qLyL, >0 and ¢ =%*1.

and

and

Case-3: If r =0, then we have the following results:
L (8Lys —9L,q)

L = 0, = 5
1 p 1213
along with constraint conditions:
16Lys —9L,q)L, 313 L,q — AL
A1=—§, Blz_ﬁl C1=( 0S l’Zq) 0’ D1= Ol’Zq OS’ E1=F1=0, (66)
2 313 613 215

where Ly and L, are arbitrary constants. From (54), (66), and f;(x)— fg(x) of step 4 of the

new mapping approach obtained in [8], we get the soliton solutions. These solutions
correspond to bright kink-type solitons, generated by a sech3-profile modulated by a tanh
function.
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q(x,t)=
2
1 | 3Ly(8Lys—9Lyq n
3qLoLy (8Lys — 912Q)sech2(6 \/—O(OLZ)X (67)
Ly + 2 eilt,
3L, (8Lys —9L
1813q2 + 2sLy (8Lys — 9[2q){1 + etanh? (é\/—W}(J}
and
r(xt)=
2
1 | 3Ly(8Lys—9Lyq n
S Y .
n| Lo+ 2 eilt,

Ly (8Lys —9L
18132 + 2sL, (8L05—9L2q){1+5tanh2(é\/—30(801229261))(}}

We also have the soliton solutions. These solutions correspond to bright anti-kink solitons,
produced by a sech3-profile combined with a coth function.

q(x,t) =
2
1 | 3Ly(8Lys—9Lyq :
3qL0L2(8L05—9L2q)CSCh2(6 \/—O(OL%Z)XJ (69)
LO B eilt’
3Ly(8Lys—9
1812q2 + 2sLy(8Lys — 91261){1 —ecoth? (é\/—O(OLZZLZq)X
and
r(xt)=
2
1 | 3Ly(8Lys—9Lyq :
3qL0L2(8L05—9L2q)CSCh2(6 \/—O(OL%Z)XJ (70)
” LO_ eilt’

Lo (8Los —
18132 + 25l (8Los - 9qu){1 - Ecothz(é \/—30(8059[’2"))()}

13
provided Ly(8Lys —9L,q)<0 and e =£1.

From (54), (66), and fy(x)— fi1o(x) of step 4 of the new mapping approach obtained in [8],

we get soliton solutions. These solutions correspond to bright kink-type solitons,
constructed from a combination of sech3 and tanh profiles.

q(xt)=
2
1 | 3Ly(8Lys—9Lyq) n
Ly (8Los - 912Q)Sech2(6 \/—L%x 1)
Ly + eilt,
21, 13g+2¢ |- Lys(8Lys —9Lyq) canhl 1 |- 3Ly (8Lys—9L,q) R
3 6 3

and
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r(xt)=
2
1 |_3Lo(8Lys—9L,q) "
L0(8Los—9lrzCI)sech2(6 \/_LZZX o

1
6

2L, {3q + 25\/—%5(&0;2_91’2") tanh(

J_ 3Ly (8Lys —9L,q)

7

)

We also have the soliton solutions: These solutions correspond to bright anti-kink solitons,

represented by the mixed sech3-coth structure.
q(x,t)=

Ly (8Lys —9L,q)csch? (é

Ly—

\/_ 3Ly(8Lys —9L,q)

i

7

SN

(73)

1

coth(
6

Lys(8Lys -9
21,2{3q+25\/—0( OLZZ L)

7

Ly (8Lys —9L,q)csch? (é

2
n|Lo—

\/_ 3Ly(8Lys -

9L,9)

i

2L, {3q +2 J—LOS(SLOLZ_ 9La)
2

ovided Ly (8Lys —9L,q)(0,s)0 and ¢ =+1.

coth(é\/— 3Ly (8Lys —9Lq)

)

7

3L, (8Lys —9L,q)

J

SN

eilt’

X

(74)

eilt’

From (54), (66), and fi3(x)— fi4(x) of step 4 of the new mapping approach obtained in [8],

we get the bright soliton solutions:

q(x,t)=
) _2
i Ly(8Lys —9L,q) n
0—
2 [4o(BLos=905)s g » o chaf € | 3Lo(BLos=90xq) (75)
L22 6 L22 eill”
~ \/4L0(8LOS—9L2q)s 92 -3
_ & :
and
r(xt)=
) -2
L Ly(8Lys —9L,q) n
0
2\/4L0(8L052—9IQCI)5+9q2 Coshz(f\/_wxj (76)
n LZ 6 LZ eill’_
~ \/4L0(8LOS—9L2q)s 492 -3
3

We also have the singular soliton solutions:
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q(x,t)=
_Lo ) _ Lo (8Lys —9L,q) T
2\/ 0(8Los—9LA)s g, Sinhz[f\/_?’Lo(f‘LoS“’Lﬂ)XJ o
3 6 3 eilt,
. \/4L0 (E;Loz22 —9L,q)s g2 -3
and _ _
r(xt)=
_Lo ) Lo (8Lys —9L,q) Ic
, J4L0<8L0;2—%q>s+9q2 Sinh{g JW} (78)
. :
[P T o,
2

provided Ly(8Lys —9L,q) <0,s <0 and e ==1.
From (54), (66) and fi;(x), and f,o(x) of step 4 of the new mapping approach obtained in
[8], we get the bright soliton solutions:

L Ly (8Lys —9L,q)
0

. \/4L0 (8L052— 9yq)s , 92
L5 eiit, (79)

Ly (8Lys —

q(x,t)=

L,

5

and

- Ly(8Lys —9L,q)
. \/ 4L (8Los ~9L5q)s | 92
I eitt, (80)

cosh| L |- Sho(8Los=90za) | o
3 3

S

r(xt)=n

L,

We also have the singular soliton solutions:

LO -

|
SN

Ly (8Lys —9L,q)
E\/—4L0 (8L0§ —9L,q)s _ 9¢2
L5 eilt, (81)
Sinh[; J%@L%q)%q

5

q(x,t)= L,

and
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]
SN

Ly (8Lys —9L,q)
. \/—4L0 (8Lys—9Lyq)s 92
13 eiit, (82)

3L, (8L,s —9L
sinh(i\/—O( OZZZ 2q)xJ—Z%q

r(xt)=n

L,

provided Ly(8Lys —9L,q)<0 and e ==1.

5.The extended auxiliary equation algorithm
Balancing w5y " and w8 in Eq. (13), then we get N=1. According to this method, we have
the formal solution as [17]:

v (x)=Ly+LiF(x)+L,F2(x), L, #0, (83)
where Ly,L; and L, are constants, while F(x) satisfies:
where C;(j=0,2,4,6) are constants. Eq. (84) holds

F(x) =%{—%(1i f(x))f (85)

6
Here, the term f{x) denotes the functional form obtained from solving the auxiliary
polynomial differential equation (84). According to [18], f{x) can take various forms
expressed through the Jacobi elliptic functions sn, cn, dn, and their reciprocals, or their
trigonometric/hyperbolic degeneracies. The notation f{x) is therefore used as a compact
representation of these possible solutions.
Substituting (83) along with (84) into Eq. (12) and equating all the coefficients of

Fk(x)[F'(x)]j,(k=0,1,2,...,16,j=0,1), to zero, then we obtain a system of algebraic

equations which are omitted here for simplicity. By solving this system of equations with the
assistance of Mathematica or Maple, we obtain the following results:

4L,
L1=0, C4= l(jZCG’

along with constraint conditions:

1212C, — 212
a=-L g -5 o _12LC 20,
2 & & (86)
21, (313C, — Lo I3C, + I3C,
D, = 0( 0~6 0[‘22 20)’ E. -F =0’
1 L% 1 1

where L, and L, are arbitrary constants.
C3(m2-1) = Cz(5m2-1)
32c2mz " * T 16Cgm2

2
q(x,t)= {—Losn[ZLlO’Z—m\/Qxﬂn girt, (87)

Family-1.If Cj =

,Cg >0 and 0<m<1, then
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2
r(xt)= n{—Losn[ZLlO’z—m\/Qxﬂn eilt,

and

2
q(x,t)= {—hns[zﬁz—m\/@xﬂn eiit,

m
2
r(X,t) = ﬂ{—%ns[zﬁ;—m@xj " eiit,

When m — 1-, then we get dark soliton solutions

-2
q<x,t>={_Lotanh[%xj

2

r(xt)= r{—LOtani{ZLOL—\/QX }n eirt,
2

and the singular soliton solutions

2
q(x,t) = {—Locoth{%xﬂn gilt,

2
r(xt)=n {—Locoth[%xﬂn giat,

ci(1-m2) . _Cy(5-me)
32c2

Family-2. If C, =

and

2
r(xt)=n {—Lons[%xﬂn giat,

(88)

(89)

(90)

(o1

(92)

(93)

(94)

,Cg >0 and 0<m<1, then

(95)

(96)

(97)

(98)

When m — 1-, then (95) and (96) reveal the same dark soliton solutions as (91) and (92),
while (97) and (98) reveal the same singular soliton solutions as (93) and (94).
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c3 _ C3(4m2+1)
32m2c2’* 16Cqm2

_ 2
q(x,t)= —Locn[%ﬂn gidt, (99)

] 2
r(xt)=n —Locr{%ﬂ" eirt, (100)

Family-3.If C, = ,Cg<0 and 0<m<1, then

and

2

Loxll—mzsn(ZLO _C6XJ "
Q(X,t)= o Lom gidt (101)

dn| =20 /—C, x

(Lzm ° j J

Lox/l—mzsn(lzlllo —Cg x !
2m eilt, (102)

r(xt)=n
dn(ZL0 —C xj
Lym

When m — 1-, then (99) and (100) leave bright soliton solutions. The solutions in (101) and
(102) describe periodic elliptic-function solitons, specifically of the sn/dn-type, representing
periodic bright-type wave trains.

2
q(x,t)= {—Loseci{uol’zﬂﬂn eilt, (103)

2
2Lg+/
r(xt) =n{—Loseci{0L—_C6xﬂn eiit, (104)
2

Cim2 .- C%(5m2—4)

Family-4. If C, = 5

,Cg <0 and 0<m<1, then

32c2(m2-1)""%  16Ce(m2-1)
2
L 2L, C L
q(x,t){— 1_0m2 dn[f (mzil)xﬂ eirt, (105)
2
L 2L C no
r(x,t):r{— 1—0m2 dn[z0 (m26—1)xﬂ eidt, (106)
and
2
2 / C no
q(X,t)=|:—L0nd[% _(]'nz—il)XJ:| ellt, (107)
2
r(x,t):n{—LOnd[% —ﬁxﬂnem. (108)
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The solutions in (105)-(108) correspond to periodic cnoidal-type solitons, governed by the
dn and nd elliptic functions; they form localized periodic wave solutions rather than isolated
solitons.

c3 _ C%(4m2-5)

Family-5. If C, = C,=
amy 7 3202(1-m2)"* 16Cs(m2-1)

,Cg >0 and 0<m<1, then

q(xt)= Lo eilt, (109)
2L, [ Cq
cnf—,/——X
L, V1-m2
N
LO .
r(x,t)= ellt’ (110)

and

2
2L, [ ¢ n
Lodn[0 - 6 XJ
Ly (m-1) eilt, (111)

q(x,t)=
1—m2cn(2L0 - Co XJ
“ b\ (1)
2
2L, C n
Lodn(0 /— 6 XJ
r(xt)=n Ly (m-1) giat, (112)

2L, C
A cn(bzo [ . 1)XJ

The solutions in (109)-(112) correspond to periodic cnoidal-type solitons (elliptic-function
solitons), specifically cn/dn-modulated periodic waves.

Cim2 . C}(m2+4)
32c2" % 16C,

2
q(x,t){—LOdn[ZLOlzﬂﬂneiu, (113)

2
r(x.t) =r{—L0dr{2LOLZﬂHn eirt, (114)

Family-6. If C, = ,Cg <0 and 0<m<1, then

and

S

(x,6)= Loyv1-m2
el q (ZLO\/—C6J
n——X
L,

ei’t, (115)
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eilt, (116)

When m — 1-, then (113) and (114) leave us the same bright soliton solutions as (103) and
(104). The solutions in (115) and (116) correspond to bright solitons, obtained as the
m — 1-, limit of the associated elliptic-function solutions.

6.Conclusions
The current paper retrieved and classified quiescent soliton solutions that emerged from

magneto-optic waveguides, considering Kudryashov’'s form of SPM and generalized
temporal evolution. Three integration algorithms showed a full spectrum of quiescent optical
solitons. The results arose after using Jacobi'’s elliptic functions when the ellipticity modulus
of the cnoidal waves approached unity. The results are solid, indicating a promising future
for this research. For example, besides magneto-optic waveguides, these methods can also
be applied to other optoelectronic devices, such as optical couplers, optical metamaterials,
polarization-maintaining optical fibers, dispersion-flattened fibers, and gap solitons in Bragg
gratings. These findings will be published later after further validation and alighment with
existing work.
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Anomayia. s cmamms onucye OMPUMAHHS CNOKIUHUX ONMUYHUX CO/NIMOHI8 y
MazHimoonmu4Hux  xeuseeodax. Cmpykmypu  camo  ¢azoeoi  modysasyii,  wo
gukopucmosgyrmucs, 6yau 3anponoHosaHi Kyodpsiwosum. Tpu aszopummu iHmezpyeaHHs
3po6UAU MONCAUBUM OMPUMAHHS YUX P038’s3kie. BdockoHaseHull npsamull aszebpaiuHutl
Memod, po3wupeHull nioxid do donomixcHUX pigHsIHb Mma HOBA cxema 8iG06PANCEHHS PA30M
do3goauau 8idHOBUMU NOBHUIU CneKmp ChOKIUHUX onmuyHux cosiimoHie. Takoxc HasedeHi
napamempuyHi 06 MexceHHs1 015 ICHY8AHHSI MAKUX CONIMOHI8. [leKinbKa YucenbHUX CUMYAaYill
intocmpyroms aHaaimuvHull pezyasmam.

Kawuoei cnoea: conimoHu, MazHimoonmuka, donoMixcHull anzopumm, cxema 8id06paxceHHs;
aszebpaiyHutl nioxio
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