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1. Introduction 
One of the main sources of quiescent optical solitons is the nonlinearity of chromatic dispersion 
(CD) [1-6]. Another source involves considering fourth–order dispersion [7-9] rather than CD. In 
this case, quiescent optical solitons cannot be analytically calculated, but they can be observed 
numerically within the model. These solitons have been extensively studied in optical fibers using 
various models and multiple integration schemes based on Lie symmetry [10–12]. The research 
has also been successfully extended to magneto–optic waveguides with Kudryashov’s 
generalized quintuple–power law and nonlocal nonlinearity, which features nonlinear chromatic 
dispersion [13]. This paper will examine the evolution of quiescent optical solitons in magneto–
optic waveguides with Kudryashov’s proposed self–phase modulation (SPM) structure and 
generalized temporal evolution. 
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This work employs three integration algorithms for retrieval. They are the enhanced 
direct algebraic algorithm [14,15], the new mapping method [16], and the extended auxiliary 
equation approach [17,18]. Collectively, these approaches reveal a full spectrum of optical 
solitons, as shown in the paper. The parameter constraints for the existence of such 
stationary optical solitons in magneto–optic waveguides are also provided. The numerical 
schemes offer a visual representation of these solitons. Details of the three algorithms and 
their successful application in retrieving soliton solutions to the model are discussed in the 
rest of the paper. 

In parallel with the development of physical models, considerable effort has been 
devoted to the construction of exact travelling-wave solutions for nonlinear Schrödinger–
type equations with nonlinear dispersion. Y. Geng and J. Li considered a nonlinearly 
dispersive Schrödinger equation and, by means of dynamical systems theory, established the 
existence of solitary patterns, compactons, kink-type waves, and various periodic structures 
[19]. Z. Yan, on the other hand, introduced a generalized nonlinear Schrödinger equation 
with nonlinear dispersion and reported envelope compactons and solitary pattern structures 
together with conserved quantities, thereby clarifying the influence of nonlinear dispersion 
on the underlying wave dynamics [20]. This viewpoint was extended to coupled systems, 
where new exact solution structures were obtained for coupled Klein–Gordon equations and 
a higher-dimensional generalized coupled NLS model, again emphasising the role of 
nonlinear dispersion [21].  

For perturbed NLS equations, attention has also been given to Kerr-type nonlinearities 
and systematic solution methods. Z. Zhang et al. conducted a qualitative analysis of a 
perturbed NLS equation with Kerr law nonlinearity and derived traveling-wave solutions by 
exploiting the related phase-plane structure [22]. In a follow-up study on the same model, 
new families of exact solutions were recovered using a modified trigonometric series method 
[23]. Along a different line, Sirendaoreji developed the auxiliary equation method, where 
exact solutions of an appropriate first-order nonlinear ordinary differential equation are 
used to construct traveling-wave solutions for quadratic and cubic nonlinear Klein–Gordon 
equations; this approach has since become a versatile tool for a broad class of nonlinear 
evolution equations [24]. Taken together, these works offer a comprehensive mathematical 
framework for addressing nonlinear dispersion and multi-power nonlinearities in optical 
soliton models. 

More recently, several studies have explored highly dispersive solitons in models that 
include additional physical effects such as stochastic perturbations, concatenated dynamics, 
and complex refractive-index structures. M. Ekici and C.A. Sarmaşık analyzed the stochastic 
concatenation model, combining NLSE-, LPD-, and Sasa–Satsuma-type contributions in the 
presence of multiplicative white noise, and derived several analytical solutions, including 
multi-wave, breather, periodic cross-kink, and Peregrine-like rational structures in optical 
fibers [25]. A. J. M. Jawad and M. J. Abu-AlShaeer obtained highly dispersive optical solitons 
for NLS-type equations with cubic and cubic–quintic–septic nonlinearities using two distinct 
analytical methods [26]. At the same time, Jihad and Almuhsan evaluated various dispersion-
compensation strategies for impairment mitigation in optical fiber communication systems 
[27]. Within the same context of highly dispersive dynamics, Y. S. Ozkan and E.Yaşar 
proposed three efficient schemes for a perturbed stochastic Fokas–Lenells equation, 
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successfully recovering a broad range of highly dispersive optical solitons [28]. In a related 
but different physical setting, Li et al. constructed bright and dark solitons in a (2+1)-
dimensional spin-1 Bose–Einstein condensate, demonstrating how similar nonlinear wave 
mechanisms emerge in ultra-cold atomic systems [29]. 

The present work builds on these developments by focusing on quiescent optical 
solitons in magneto–optic waveguides, governed by a generalized nonlinear Schrödinger 
equation with Kudryashov’s first form of nonlinear self-phase modulation and nonlinear 
chromatic dispersion. In contrast to the above studies, we recover quiescent solitons for this 
magneto-optic setting for both linear and generalized temporal evolutions, using a 
combination of auxiliary-equation, mapping, and algebraic schemes tailored to Kudryashov-
type nonlinear refractive-index laws. 

2. Mathematical analysis  
The dimensionless form of the nonlinear Schrödinger equation (NLSE) with Kudryashov’s 
law having nonlinear chromatic dispersion and generalized linear temporal evolution is 
written as:  

     21 2
3 42 0,p n nl l l

t n nxx

b bi q a q q b q b q q
q q

 
       

  
 (1) 

The dimensionless form of the NLSE in magneto-optic waveguides with Kudryshov’s law 
having generalized temporal evolutions and nonlinear CD is written as:  
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and  
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  (3) 

where  ,q x t  and  ,r x t  are complex-valued functions that represents the wave profiles 

with i   1 . The first terms in Eqs. (2) and (3) represent the generalized temporal 
evolutions with parameter 1l  . The constants  1,2ja j   are the coefficients of generalized 

nonlinear CD with nonlinearity parameter 0p  . The constants jQ  for  1,2j   are the 

coefficients from the magneto–optic waveguides effect. Here, x and t  denote the spatial and 
temporal coordinates, respectively. The functions  ,q x t  and  ,r x t  represent the slowly 

varying complex envelopes of the optical fields propagating through the waveguide. The 
parameters (b1, b2, ..., b8) and (d1, d2, ..., d8) are real constants associated with the nonlinear 
coefficients of Kudryashov’s law, which describe higher-order nonlinear effects such as self-
phase and cross-phase modulation. The exponent (n>0) determines the nonlinear refractive 
index order, influencing the intensity dependence of the nonlinearity. The constants 1Q  and 
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2 Q correspond to the magneto–optic coupling coefficients that arise from the magneto–optic 

effect – a phenomenon where an external magnetic field alters the optical properties of the 
medium, leading to coupling between the two field components q  and r . This effect 
manifests as magnetically induced birefringence or Faraday rotation, enabling energy 
transfer between the coupled wave modes. 
To get quiescent solitons of Eqs. (2) and (3), we consider the wave transformation:  

   
   

1

2

, ,
, ,

i t

i t

q x t x e
r x t x e












     (4) 

where    1,2j x j   are real-valued functions of x , while   is a constant representing the 
frequency. Substituting (4) into Eqs. (2) and (3), we have  
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and  
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Now, let’s assume:  
   2 1 ,x x        (7) 

where   is a nonzero constant. Eqs. (5) and (6) become:  
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and  
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Eqs (8) and (9) are equivalent under the constraint conditions:  
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In order to solve Eq. (8), we choose p n , then Eq. (8) simplifies to  
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Balancing 3 1''1 1
n    with 4

1
n  in Eq. (11), gives 2N

n
 , where N  is the balance number of Eq. 

(11). Since the balance number is not integer, then we take into consideration the 
transformation  
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where  x  is a new function of x . Substituting Eq. (12) into (11), we get  
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In the next three sections, we will solve Eq. (13) by using the following methods. 

3. Enhanced direct algebraic approach 
Balancing 5 ''   and 8  in Eq. (13), then we get 1N  . Since the balance number obtained 

from Eq. (11) is non-integer, the transformation in Eq. (12) is employed to reformulate the 
equation into a form with an integer balance number, thereby enabling the standard 
balancing algorithm to be used. According to this method, we have the formal solution as 
[14]:  

    
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1 2 2
0 1 1 1,    0,Lx K K x L K

x
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
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where 0 1,K K  and 1L  are constants to be determined, while  x  satisfies  
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x x  



      (15) 

where  0,1,2,3,4j j   are constants provided that 4 0  . Substituting (14) along with (15) 

into Eq. (12) and equating all the coefficients of    , 0, 1, 2, , 8l x l       to zero, we obtain 

a system of algebraic equations, omitted here for simplicity. By solving this system of 
equations with the assistance of Mathematica or Maple, we obtain the following results: 
Case–1: If 0 1 3 0     , then we have the following results:  
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When 2 40, 0,    we have the bright soliton solutions:  
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provided 1 0B  . The magneto-optic parameter 1 Q is absent explicitly in Eqs. (17) and (18); 

however, it contributes indirectly via the relation  
 

1
1
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 which determines 1B . 

Thus, the soliton profiles remain influenced by the magneto-optic effect. 
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Case–2: If 
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When 2 40, 0,   we have the singular soliton solutions:  
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and the dark soliton solutions  
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In this case, the constraint 1 0D   together with the general relation  
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implies 1 0ll Q   , so the magneto-optic contribution 1lQ  is exactly cancelled by the 

term l , and the resulting soliton solutions no longer contain 1Q  explicitly. This occurs in 
the solutions (20)–(23) as well as in the subsequent solutions (25)–(28). 
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When 2 40, 0,   we have the dark soliton solutions:  
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 (26) 

and the singular soliton solutions  

  

2
2

1 4
0

0

1 4

0

2coth  1
, ,

22coth  

n

i t

LK x
K

q x t e
L x

K







             
       

 (27) 

   

2
2

1 4
0

0

1 4

0

2coth  1
, .

22coth  

n

i t

LK x
K

r x t e
L x

K








             
       

 (28) 

Case–3: When 1 3 0   , then we have the following results: 

(I) If  
 

22 2
2

0 22 4

1

2 1

m m

m










. Here m is the elliptic modulus of the Jacobi elliptic functions, with 

0 1m  , then we get  
2

40
1 2 2

1

2
0,    ,

K
L

K


    

along with constraint conditions:  
 
 

42 4 244 004
1 1 1 1 1 122 2 2 21 1 1

3 8 8 123 ,    ,    , ,    0.
2 2 2 2 1

K m mK
A B C D E F

K K K m

  
        


 (29) 

Now, the Jacobi elliptic function solutions of Eqs. (2) and (3) are listed as 

  
2

0 4
0 22 1

22 , 1 cn  ,
2 12 1

n
i tKmq x t K x e

K mm
              

  (30) 

and  

  
2

0 4
0 22 1

22 , 1 cn  .
2 12 1

n
i tKmr x t K x e

K mm


              
  (31) 

Solutions (30) and (31) represent periodic wave solutions expressed in terms of Jacobi 
elliptic functions, which reduce to bright solitons in the limit 1m    

  
2

0 4
0

1

2
, 1 2sech  ,

n
i tK

q x t K x e
K


        

     
   (32) 

and  
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  
2

0 4
0

1

2
, 1 2sech  ,

n
i tK

r x t K x e
K





        

     
   (33) 

provided 4 0  . Since in general  
 

1
1

12

ln l Q
D

a n l
 

 


, equating this with the explicit 

expression of 1D  in (29) yields a linear relation between  and 1Q ; therefore, the phase 

parameter , and hence the solutions (30)–(33), depend on the magneto-optic parameter 1Q  

through this relation. 

(II) If      222 20 2 41 2m m      and 0 1m  , then we get  

 
 

22 2 0
1 4 22 2

1

2 1  
0,  ,

2

m K
K

L m





 


 

along with constraint conditions:  

 

2 4202
1 1 1 2 1 1 122 20

3  3 ,    ,    ,    ,    0.
2 4 4 2

K m
A B C D E F

K m

        


 (34) 

Now, the Jacobi elliptic function solutions of Eqs. (2) and (3) are defined as:  

  

2

20
0

22
2

2 2, ,
2 dn  

2

n

i tK mq x t K e
m m x

m




 
   
  

     

   (35) 

and  

  

2

20
0

22
2

2 2, ,
2 dn  

2

n

i tK mr x t K e
m m x

m




 
   
  

     

   (36) 

provided 2 0  . Solutions (35) and (36) represent periodic dn-type Jacobi elliptic wave 
solutions of Eqs. (2) and (3). 

(III) If 
 

22
2

0 22 41

m

m








 and 0 1m  , then we get 

Result–1:  
2

40
1 2 2

1

2
0,    ,

K
L

K


    

along with constraint conditions:  
 
 

42 4 244 004
1 1 1 1 1 122 2 2 21 1 1

3 2 123 ,    ,    , ,    0.
2 2 2 1

K m mK
A B C D E F

K K K m

  
        


 (37) 

Now, the Jacobi elliptic function solutions of Eqs. (2) and (3) are enumerated as:  

  
2

0 4
0 0 2 21

2 2,   sn  ,
1 1

n
i tKq x t K mK x e

m K m
  

      
  (38) 

and  
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 
2

0 4
0 0 2 21

2 2,   sn  .
1 1

n
i tKr x t K mK x e

m K m



  

      
  (39) 

Solutions (38) and (39) correspond to periodic wave solutions described by the Jacobi 
elliptic sn-function, which reduce to dark soliton solutions in the limit 1m  . 

  
2

0 4
0 0

1
,  tanh  ,

n
i tK

q x t K K x e
K


  

   
   

   (40) 

and  

  
2

0 4
0 0

1
,  tanh  ,

n
i tK

r x t K K x e
K





  

   
   

   (41) 

provided 4 0  .  
Result–2:  

 
   

2
0

1 21
22 2 41

2 2 2
0

2
 ,   

6 1

6 1 1
,

2

K m
K

L m m

m m L m
K m





 

  
 

 

along with constraint conditions:  

 

   

 

2 22 22 24 41 1
1 1 14 22 2

0 0
24 3 2 41

1 1 12

 6 1  6 13 ,        ,        ,
2 8 2

3 4 6 4 1
,        0.

8

L m m L m m
A B C

K m K m

m m m m L
D E F

m

 



   
    

   
   

  (42) 

Now, the Jacobi elliptic function solutions of Eqs. (2) and (3) are defined as:  
 

 

 

 

2
2

21 4

0
0

21 42
0

21 42
0

,

 2 6 1
2  sn  

2

 2 6 1 ,6 1 sn  2
2

 2 6 1
6 1 sn  

2

n

i t

q x t

L m m
m x

K m
K

L m m em m x
K m

L m m
m m x

K m











              
    

           
         

  

  (43) 

and  
 

 

 

 

2
2

21 4

0
0

21 42
0

21 42
0

,

 2 6 1
2  sn  

2

 2 6 1
6 1 sn  2

2

 2 6 1
6

.

1 sn  
2

n

i t

r x t

L m m
m x

K m
K

L m m em m x
K m

L m m
m m x

K m











              
    

           
         

  

  (44) 
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Solutions (43) and (44) describe periodic Jacobi elliptic wave solutions of the sn-type, which 
reduce to the same dark solutions as (25) - (26) when the elliptic modulus approaches 

1m  . 
Case–4: When 0 1 0   , then we have the following results  

 0 0 4 1 3
1 2 2

1

4 3
0,    ,

2
K K K

L
K
 




    

along with constraint conditions:  
 

 

0 0 4 1 34
1 1 12 2

1 1
3

0 4 1 30
1 1 12

1

8 33 ,    ,    ,
2 2 4

3 2
,    0.

4

K K K
A B C

K K

K K K
D E F

K

 

 


    


   

   (45) 

When 2 40, 0    and  0 0 4 1 34 3 0K K K   , we have the soliton solutions  

 

   

   

2
2

0 0 4 1 3
0 0 4 1 3 2

1
0

0 0 4 1 3
0 0 4 1 3 4 1 32

1

,

2 4 314 3 sech  
4 ,

2 4 312 2 4 3  tanh  2
4

n

i t

q x t

K K K
K K K x

K eK
K K K

K K K x K
K



 
 

 
   



         
        
  

  (46) 

 

   

   

2
2

0 0 4 1 3
0 0 4 1 3 2

1
0

0 0 4 1 3
0 0 4 1 3 4 1 32

1

,

2 4 314 3 sech  
4 ,

2 4 312 2 4 3  tanh  2
4

n

i t

r x t

K K K
K K K x

K eK
K K K

K K K x K
K



 
 


 

   



         
        
  

  (47) 

and  
 

   

   

2
2

0 0 4 1 3
0 0 4 1 3 2

1
0

0 0 4 1 3
0 0 4 1 3 4 1 32

1

,

2 4 314 3 csch  
4 ,

2 4 312 2 4 3  coth  2
4

n

i t

q x t

K K K
K K K x

K eK
K K K

K K K x K
K



 
 

 
   



         
        
  

  (48) 

 

   

   

2
2

0 0 4 1 3
0 0 4 1 3 2

1
0

0 0 4 1 3
0 0 4 1 3 4 1 32

1

,

2 4 314 3 csch  
4

2 4 312 2 4 3  coth  2
4

.

n

i t

r x t

K K K
K K K x

K eK
K K K

K K K x K
K



 
 


 

   



         
        
  

 (49) 
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Solutions (46)–(49) describe mixed bright–dark soliton solutions, where the sech 
component generates a bright-type profile, and the tanh/ coth component produces a dark-
type modulation. 
(II) When 2 30, 0    and  0 0 4 1 34 3 0K K K   , we have the soliton solutions  

 

   

   

2
2

0 0 4 1 3
0 1 0 4 1 3 3 2

1
0 2

0 0 4 1 32 2
0 0 4 1 3 41 3 2

1

,

2 4 314 3 sech  
4

,
2 4 312 4 3 1 tanh  

4

n

i t

q x t

K K K
K K K K x

K
K e

K K K
K K K K x

K



 
  

 
   



         
                

 (50) 

 

   

   

2
2

0 0 4 1 3
0 1 0 4 1 3 3 2

1
0 2

0 0 4 1 32 2
0 0 4 1 3 41 3 2

1

,

2 4 314 3 sech  
4

,
2 4 312 4 3 1 tanh  

4

n

i t

r x t

K K K
K K K K x

K
K e

K K K
K K K K x

K



 
  


 

   



         
                

 (51) 

and  
 

   

   

2
2

0 0 4 1 3
0 1 0 4 1 3 3 2

1
0 2

0 0 4 1 32 2
0 0 4 1 3 41 3 2

1

,

2 4 314 3 csch  
4

,
2 4 312 4 3 1 coth  

4

n

i t

q x t

K K K
K K K K x

K
K e

K K K
K K K K x

K



 
  

 
   



         
                

 (52) 

 

   

   

2
2

0 0 4 1 3
0 1 0 4 1 3 3 2

1
0 2

0 0 4 1 32 2
0 0 4 1 3 41 3 2

1

,

2 4 314 3 csch  
4

2 4 312 4 3 1 coth

.

 
4

n

i t

r x t

K K K
K K K K x

K
K e

K K K
K K K K x

K



 
  


 

   



         
                

 (53) 

Solutions (50)–(53) describe straddled bright–dark soliton solutions, where the sech term 
generates a bright component while the tanh or coth term produces a dark or anti-dark 
component. 

4. New mapping method 
Balancing 5 ''   and 8  in Eq. (13), then we get 1N  . According to this method [16], we 
have the formal solution as:  

      20 1 2 2,    0,x L L f x L f x L        (54) 

while  f x  satisfies the following first order ordinary differential equation (ODE):  
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        '2 2 4 61 1 ,    0,
2 3

f x r pf x qf x sf x s        (55) 

where 0 1 2, , , , ,L L L r p q , and s  are arbitrary constants. Substituting (54) along with (55) into 

Eq. (12) and equating all the coefficients of      , 0,1,2, ,16, 0,1jkf x f x k j     , to zero, 

we obtain a system of algebraic equations, omitted here for simplicity. Here, the symbols r 
and q appearing in Eq. (55) denote constant parameters of the auxiliary ordinary differential 
equation and should not be confused with the functions r ( x , t ) and q (x , t ) introduced 
earlier in Eqs. (2) and (3). 
By solving this system of equations with the assistance of Mathematica or Maple, we obtain 

the following results: 

Case–1: If 
2 23 16,

16 27
q ps r

p q
  , then we have the following results 0

1
2

30,   ,
4
L qL p
L

   along with 

constraint conditions:  

0
1 1 1 1 1 1

0 2 2

3 ,        ,        ,        0,
2 6 2

L qqA B C D E F
L L L

           (56) 

where 0L  and 2L  are arbitrary constants. 

From (54), (56), and    1 2f x f x  of step 4 of the new mapping approach obtained in [8], 

we get the bright soliton solutions:  

  

2

0

02
2

3, ,
4cosh  1

2

n

i tLq x t e
L q x
L



 
 
    
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   


    (57) 

and  
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2

3, .
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n

i tLr x t e
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L
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   


    (58) 

We also have the bright soliton solutions:  
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2

n

i tLq x t e
L q x
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
    (59) 

and  
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   (60) 
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provided 0 2 0qL L   and 1  . In this case, the constraint 1 0D   together with the general 

relation  
 

1
1

12

ln l Q
D

a n l
 

 


  implies that the resulting soliton solutions no longer contain 1Q  

explicitly. This occurs in solutions (57)–(60). 

Case–2: If 
23 , 0

16
qs r

p
  , then we have the following results:  

0
1

2
0,     ,

2
L qL p

L
   

along with constraint conditions:  

 
3

0 0
1 1 1 1 1 1

0 2 2 2

33 ,        ,        ,        ,        0,
2 4 2 4

L qL qqA B C D E F
L L L L

          (61) 

where 0L  and 2L  are arbitrary constants. From (54), (61), and    5 6f x f x  of step 4 of the 

new mapping approach obtained in [8], we get the dark soliton solutions:  

  
2

0
0

2
, tanh  ,

2
n

i tL qq x t L x e
L


  

   
   

     (62) 

and  

  
2

0
0

2
, tanh  .

2
n

i tL qr x t L x e
L


  
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   

     (63) 

We also have the singular soliton solutions:  

  
2

0
0

2
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2
n

i tL qq x t L x e
L


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     (64) 

and  

  
2

0
0

2
, coth  ,

2
n

i tL qr x t L x e
L


  

   
   

     (65) 

provided 0 2 0qL L   and 1  . 
Case–3: If 0r  , then we have the following results:  

 0 0 2
1 2

2

8 9
 0,    ,

12
L L s L q

L p
L


    

along with constraint conditions:  
  3 4

0 2 0 20 0
1 1 1 1 1 12 2 2

2 2 2

16 9 3 43 2,    ,    ,    ,    0,
2 3 6 2

L s L q L L L q L ssA B C D E F
L L L

 
         (66) 

where 0L  and 2L  are arbitrary constants. From (54), (66), and    7 8f x f x  of step 4 of the 

new mapping approach obtained in [8], we get the soliton solutions. These solutions 
correspond to bright kink-type solitons, generated by a sech3-profile modulated by a tanh 
function. 
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 (67) 
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

 (68) 

We also have the soliton solutions. These solutions correspond to bright anti-kink solitons, 
produced by a sech3-profile combined with a coth function. 
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and  
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

 (70) 

provided  0 0 28 9 0L L s L q   and 1  .  

From (54), (66), and    9 10f x f x  of step 4 of the new mapping approach obtained in [8], 

we get soliton solutions. These solutions correspond to bright kink–type solitons, 
constructed from a combination of sech3 and tanh profiles. 
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 (71) 

and  
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 (72) 

We also have the soliton solutions: These solutions correspond to bright anti-kink solitons, 
represented by the mixed sech3–coth structure. 
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 (74) 

ovided  0 0 28 9 0, 0L L s L q s  and 1  .  

From (54), (66), and    13 14f x f x  of step 4 of the new mapping approach obtained in [8], 

we get the bright soliton solutions:  
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We also have the singular soliton solutions:  
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provided  0 0 28 9 0, 0L L s L q s    and 1  .  

From (54), (66) and  17f x , and  20f x  of step 4 of the new mapping approach obtained in 

[8], we get the bright soliton solutions:  
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We also have the singular soliton solutions:  
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provided  0 0 28 9 0L L s L q   and 1  . 

5. The extended auxiliary equation algorithm  
Balancing 5 ''   and 8  in Eq. (13), then we get 1N  . According to this method, we have 

the formal solution as [17]:  
      20 1 2 2,    0,x L L F x L F x L        (83) 

where 0 1,L L  and 2L  are constants, while  F x  satisfies:   

        '2 2 4 60 2 4 6 6,    0,F x C C F x C F x C F x C       (84) 

where  0,2,4,6jC j   are constants. Eq. (84) holds  

     
1
24
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1 1 .
2

CF x f x
C

 
   

 
    (85) 

Here, the term f(x) denotes the functional form obtained from solving the auxiliary 
polynomial differential equation (84). According to [18], f(x) can take various forms 
expressed through the Jacobi elliptic functions sn, cn, dn, and their reciprocals, or their 
trigonometric/hyperbolic degeneracies. The notation f(x) is therefore used as a compact 
representation of these possible solutions.  
Substituting (83) along with (84) into Eq. (12) and equating all the coefficients of 

     , 0,1,2, ,16, 0,1jkF x F x k j     , to zero, then we obtain a system of algebraic 

equations which are omitted here for simplicity. By solving this system of equations with the 
assistance of Mathematica or Maple, we obtain the following results:  

0 6
1 4

2

40,   ,L CL C
L

   

along with constraint conditions:  
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1 1 12 2
2 2

3 32
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2 3  
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L L
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D E F

L


    

 
   

   (86) 

where 0L  and 2L  are arbitrary constants. 
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and  
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When 1m  , then we get dark soliton solutions  
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and the singular soliton solutions  
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When 1m  , then (95) and (96) reveal the same dark soliton solutions as (91) and (92), 
while (97) and (98) reveal the same singular soliton solutions as (93) and (94).  
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When 1m  , then (99) and (100) leave bright soliton solutions. The solutions in (101) and 
(102) describe periodic elliptic-function solitons, specifically of the sn/dn–type, representing 
periodic bright-type wave trains. 
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The solutions in (105)–(108) correspond to periodic cnoidal-type solitons, governed by the 
dn and nd elliptic functions; they form localized periodic wave solutions rather than isolated 
solitons. 
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The solutions in (109)–(112) correspond to periodic cnoidal-type solitons (elliptic-function 
solitons), specifically cn/dn-modulated periodic waves. 
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When 1m  , then (113) and (114) leave us the same bright soliton solutions as (103) and 
(104). The solutions in (115) and (116) correspond to bright solitons, obtained as the 

1m  ,  limit of the associated elliptic-function solutions. 

6. Conclusions 
The current paper retrieved and classified quiescent soliton solutions that emerged from 
magneto–optic waveguides, considering Kudryashov’s form of SPM and generalized 
temporal evolution. Three integration algorithms showed a full spectrum of quiescent optical 
solitons. The results arose after using Jacobi’s elliptic functions when the ellipticity modulus 
of the cnoidal waves approached unity. The results are solid, indicating a promising future 
for this research. For example, besides magneto–optic waveguides, these methods can also 
be applied to other optoelectronic devices, such as optical couplers, optical metamaterials, 
polarization-maintaining optical fibers, dispersion–flattened fibers, and gap solitons in Bragg 
gratings. These findings will be published later after further validation and alignment with 
existing work. 
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Анотація. Ця стаття описує отримання спокійних оптичних солітонів у 
магнітооптичних хвилеводах. Структури само фазової модуляції, що 
використовуються, були запропоновані Кудряшовим. Три алгоритми інтегрування 
зробили можливим отримання цих розв’язків. Вдосконалений прямий алгебраїчний 
метод, розширений підхід до допоміжних рівнянь та нова схема відображення разом 
дозволили відновити повний спектр спокійних оптичних солітонів. Також наведені 
параметричні обмеження для існування таких солітонів. Декілька чисельних симуляцій 
ілюструють аналітичний результат. 

Ключові слова: солітони, магнітооптика, допоміжний алгоритм, схема відображення; 
алгебраїчний підхід 


