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1. Introduction 
Determining the maximum theoretically achievable values of certain effects in crystalline 
materials is an important problem from an applied perspective, with solutions indicating 
ways to increase the efficiency of material use in devices. If the value of the effect, the 
maximum (in certain applications, possibly the minimum) of which is sought, does not 
depend on the geometric characteristics of the device, the absolute values of the applied 
loads, etc., it can be considered as a characteristic of the material and used for comparison 
with other materials. 

In nonlinear optics problems, the conversion efficiency can be considered a 
characteristic, or rather a component separated from it, depending only on the wave 
directions and the material parameters. In our previous papers [1,2], we studied the 
maximum achievable efficiencies of second-harmonic (SHG), sum-frequency (SFG), and 
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difference frequency (DFG) generation in uniaxial and biaxial (orthorhombic) crystals. The 
highest achievable value was determined by optimizing the propagation directions of the 
interacting waves, which were generally considered non-collinear; in other words, the vector 
phase matching (PM) case was analyzed. In such a more general formulation of the problem, 
this analysis was carried out for the first time. In this work, we extend our approach to 
lower-symmetry nonlinear optical crystals of the monoclinic system. The nomenclature of 
such crystals is not significant: as far as we know, only for four of them – GdCa4O(BO3)3 
(GdCOB), YCa4O(BO3)3 (YCOB), BiB3O6 (BiBO), La2CaB10O19 (LCB), it is a set of values 
sufficient for optimization which have been determined experimentally or theoretically (see 
[3-5]). The optimization process for monoclinic crystals is somewhat complicated because 
the position of the two main axes of the optical indicatrix is not fixed, but depends on the 
light wavelength. The optimization results, as before, are presented using a special type of 
surfaces – the extreme ones, proposed by us earlier for the visualization of the anisotropy of 
different physical effects in crystals. The results for vector PM are compared with those for 
scalar PM when the directions of the pump and output beams coincide. 

2. Basic relations and parameters of crystals 
As it is known, the total efficiency of the nonlinear three-wave mixing processes (see, e.g., 
[6,7]) is proportional to the geometrical factor:  
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where i are the wavelengths, d̂  is the tensor of nonlinear coefficients, n(1), n(2), n(3) are 
the refraction indices of pump (1, 2) and output (3) beams,  1e

 , 2e
 , 3e

  are the unit vectors 

parallel to the electric vectors of the corresponding waves, ˆj je i
 , ̂  is the dielectric 

permittivity tensor, ji


 is the electric displacement unit vector [8]. The dimension of  is 

pm2/V2, and it represents only the geometrical factor of the total efficiency of nonlinear 
optical process. This factor is determined by crystals symmetry and the relationship between 
the nonlinear coefficients. It allows one to construct extreme surfaces representing the 
highest achievable values of  for all possible directions of the output wave vector 3k


, 

determined by the angles ,  of the spherical coordinate system (CS). Since this paper is 
devoted to the characteristics of materials, the efficiency in the form (1), which does not 
account for the length of the nonlinear medium or the powers of the interacting waves, is 
convenient for our analysis. 

In the case of the strict vector PM, the following expression for the wave vectors should 
be satisfied: 

3 1 2 ,k k k 
  

      (2) 
where the upper sign corresponds to SHG or SFG and the lower sign to DFG. As well as 

in [1,2], in our calculations, the wave vector 3k


 is passed through the full spherical angle 

(=0…π,  = 0…2π). For each given 3k


, the condition (2) can be fulfilled for a set of 1k


, 2k


 

pairs, and the value of the efficiency  is generally different for different 1k


, 2k


. Thus, for 
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each 3k


, we determine such a 1k


, 2k


 pair that maximizes the efficiency; as a result, the 

dependence max ( 3k


) is obtained, which can be represented by a surface. Because each point 
of this surface is obtained after optimization, we call it the extreme one. The highest value of 
max (designed further as extr

vect ) is the sought value of the maximal achievable efficiency, the 

determination of which is the objective of our work. A more detailed explanation of the 
optimization technique for the case of biaxial crystals is given in [2]. The analysis of the 
scalar PM was also carried out for comparison, and the corresponding maximal achievable 
efficiency for scalar case extr

scal  was determined. 

All calculations for SHG and SFG were carried out for two types of PM determined by 
the velocities (and polarizations) of interacting beams: (i) both pump waves are ‘slow’, i.e. 
correspond to higher value of the refraction index (of two possible for a given direction of 
the wave vector), and the output wave is ‘fast’ (ssf or type I PM) and (ii) one pump wave is 
slow and the other is fast (sff, fsf or type II PM). For DFG in biaxial crystal type I, PM is ffs, and 
for type II, it is fss or fsf. The mutual orientations of the wave vectors of the pump 1k


, 2k


, 

and output 3k


 waves for the case of SFG are shown in Fig. 1.  

 
Fig. 1. The mutual orientations of the wave vectors of the pump 1k


, 2k


and output 3k


 waves (the case 
of SFG); C is the line of cross-section of wave vector surfaces of initial waves (see [2] for details). 

The extreme surfaces are constructed, and optimal PM conditions are determined 
for GdCOB, YCOB, BiBO, and LCB crystals that belong to the point symmetry groups of 
symmetry m or 2 (the third point group of the monoclinic symmetry (2/m) is 
centrosymmetric, so the considered effects are not observed in crystals of this group). 
The nonlinear susceptibilities of the crystals taken from [3-5] are indicated in Table 1. It 
should be noted that nonlinear susceptibilities were not measured for the LCB crystal, 
and only the calculated values are known for it [5]. However, as shown in Table 1, these 
values of the nonlinear susceptibilities do not satisfy the Kleinman symmetry rule (d14 = 
d25 = d36, d16 = d21, d23 = d34). Nevertheless, the Kleinman symmetry can be violated (e.g., 
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for BiBO); in the case of LCB, this violation is significant – the corresponding coefficients 
differ even in sign. Even though this casts doubt on the accuracy of the coefficient 
determination in [5], we have also performed calculations for such values, since for 
monoclinic crystals of point group 2, the amount of appropriate data is limited. 

The refractive indices were calculated using the Sellmeier equations given in [3]. All extreme 
surfaces were constructed in a crystal-optics CS connected with the output light wave, i.e., the 
orthogonal system was built on the main axes of the optical indicatrix (where the X axis 
corresponds to the lowest value of the main refraction index, the Y axis to the intermediate, and 
the Z-axis to the highest one). Because the components of the tensor of nonlinear coefficients d 
for the BiBO crystal are given in a special orthonormalized crystal-physics CS that differs from the 
crystal-optics one (see Fig. 2), the tensor transformations were carried out in accordance with 
known rules [9,10]. For GdCOB and YCOB crystals, the crystal-physics CS coincides with the 
crystal-optics one [11,12]. The orientation of the axes for LCB is not described; however, it is 
known that the crystal-optic system for the crystal is similar to the ones of GdCOB and YCOB, 
particularly, the Y axis coincides with the crystallographic axis b [13-15]. 

Table 1. Parameters of the considered crystals. 
Crystal Nonlinear susceptibilities, dij, pm/V 

Point group of symmetry m 

GdCOB* d11  0; d12 = d26 = 0.27; d13 = d35 = –0.85; d31 = d15 = 0.20;  
d32 = d24 = 2.23; d33 = –1.87 

YCOB* d11  0; d12 = d26 = 0.24; d13 = d35 = –0.73; d31 = d15 = 0.41;  
d32 = d24 = 2.35; d33 = –1.60 

Point group of symmetry 2 

BiBO d14 = 2.4; d16 = 2.8; d21 = 2.3; d22 = 2.53; d23 = –1.3;  
d25 = 2.3; d34 = –0.9; d36 = 2.4 

LCB d14 = –0.05; d16 = –0.15; d21 = 0.55; d22 = –0.25; d23 = 0.4;  
d25 = 0.02; d34 = –0.25; d36 = –0.05 

*Given equalities of the nonlinear susceptibilities for GdCOB and YCOB correspond to the Kleinman 
symmetry conditions, which are valid for these crystals [4]. 
 

Moreover, the principal axes of the indicatrix do not coincide for different wavelengths, 
which should also be taken into account. However, sufficiently complete information for this 
is known only for BiBO [4,10]; for other crystals, we neglect this difference in the 
calculations. As shown below, such an approximation is quite acceptable for BiBO, although 
its validity for other crystals requires further investigation. 

The wavelength dependence of the angle  between abscissa axes of crystal-physics and 
crystal–optics CS for BiBO was determined in [8] for certain values of  in the range of 
0.365…2.325 m. Since our calculations require values of this angle at arbitrary wavelengths, 
we approximated the dependence found in [10]. As it is seen from Fig. 3, it is well described 
by the function: 

 
   20 1 2

,a
b b a b a

 
 


   

    (3) 

where []=degrees, []=m, a=0.2150.009 m, b0=(3.80.3)×10–4 m/deg, 
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b1=0.020237×10–5 deg-1, b2=(6.50.3)×10–4 (m×deg)-1. 
 

 
Fig. 2. The mutual orientations of the crystallographic CS (the unit vectors a

 , b


 c
 , the angle between 

a
  and c

  is  = 105.62o [4]), crystal-physics CS (the unit vectors ( )p
ie
 , i = 1,2,3), and crystal-optics CS 

(the unit vectors  o
ie
 , i = 1,2,3) for the BiBO crystal. The nonlinear susceptibilities were determined in 

the crystal-physics CS [9], however, in accordance with the algorithm used for calculations, the minimal 
main value of the refraction index must correspond to the abscissa axis, which is why the unit vector 
 
1

oe
  of the crystal-optics CS coincides with  

2
pe

  of the crystal-physics one. The orientations of other 
axes of crystal-optics CS is shown in accordance with [9]. 
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Fig. 3. The dependence of the angle  (deg) on the wavelength (m) for the BiBO crystal (circles) [8] and 
its approximation by the function (3) (line). 
 

At that, with the known values of , the components of dielectric permittivity tensors 
for input waves were determined in the crystal-optics CS connected with the output beam in 
accordance with known rules [6]. Because the directions of the  



Dmytro Shulha et al 

Ukr. J. Phys. Opt. 2025, Volume 26, Issue 4 04100 

Y-axes (unit vector  
1

oe
 ) of indicatrices for all wavelengths coincide for the BiBO crystal, only 

one non-zero non-diagonal component 23 appeared as a result of such a tensor 
transformation.  

3. 3. Results and Discussion 
3.1. Second-harmonic generation 
The wavelengths of pump beams used in the calculations of the maximal achievable SHG 
efficiency are equal to 1.0642 m for all considered crystals. 

The general and the top views of extreme surfaces of the SHG efficiency max for the 
investigated crystals are shown in Figs. 4,5. The black lines on the figures correspond to the scalar 
PM conditions. It should be noted that the point (0;0;0), as well as the lines connecting this point 
with the edges of the extreme surface, do not belong to this surface and appear in the figures only 
in connection with the method of 3D surface construction in the software used. 

Because the condition (2) is not fulfilled for type II PM in GDCOB at the considered 
wavelength, only one extreme surface (for ssf PM) is shown for this crystal. As it is seen from 
Figs. 1,2, the forms of ssf extreme surfaces are similar for GdCOB and YCOB (belonging to the 
point group of symmetry m) crystals. In contrast, for BiBO and LCB (belonging to the point group 
of symmetry 2), they are essentially different. Obviously, it is caused by different coordinate 
transformation rules for BiBO and LCB, and by different relationships among the values of the 
nonlinear susceptibilities dij. 

The values shown in the parentheses in the last column of Table 2 are the relative 
increase of SHG efficiency caused by vector PM in relation to the scalar one, 

 extr extr extr
vect scal scal      (in percents). 

 
Fig. 4. Extreme surfaces for SHG in monoclinic crystals of point symmetry group m, in pm2/V2. 
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Fig. 5. Extreme surfaces for SHG in monoclinic crystals of point symmetry group 2, in pm2/V2. 

Table 2. The maximal achievable SHG efficiencies  and corresponding angular parameters. 

Scalar PM Vector PM 

Angles, deg. 
Angles  

(pump beams), 
deg. 

Angles  
(SH beam), 

deg. 
Crystal 

  

extr
scal , 

pm2/V2 
1p, 1p 2p, 2p   

extr
vect , 

pm2/V2 

Type I PM 
GdCOB 113.0 47.6 0.61 
YCOB 67.1 142.9 0.68 
BiBO 154.1 42.6 2.0 
LCB 36.6 180 0.056 

coincides with scalar ssf 

Type II PM 

YCOB 98.0 256.0 0.063 
82.3 

283.5 
82.2 

284.5 
82.2 284 

0.064 
(1.4%) 

BiBO 144.9 107.6 1.09 
138.1 
99.6 

128.1 
106.5 

133.3 103.2 
1.11 
(2%) 

LCB 124.6 220.8 0.0070 almost coincides with scalar sff* 
*the relative increase of SHG efficiency is lower than 1%. 

As our calculations show, the use of type I (ssf) vector PM does not allow increasing the 
efficiency  relative to the scalar PM case for all investigated crystals.  In all cases, the lines 
corresponding to scalar PM in the figure frame the edges of extreme surfaces and pass 
through the points corresponding to extr

vect . Practically the same situation takes place in the 

case of type II (sff) vector PM in YCOB, BiBO, and LCB – the relative increase of SHG efficiency 
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caused by vector PM is no more than 2%.  It is contrary to the case of orthorhombic crystals, 
where the use of vector PM allows essentially increasing the value of the SHG efficiency, up 
to several tens of percent for a number of crystals, and even almost one and a half times for 
KB5O8·4H2O [2]. The BiBO crystal demonstrates the highest SHG efficiency for both types of 
PM, whereas LCB shows the lowest. 

It should also be noted that accounting for the rotation of the BiBO crystal's optical 
indicatrix with wavelength changing has practically no effect on the obtained result. For 
example, the efficiency value obtained without accounting for this rotation differs less than 
1% from the value given in Table 2. The maximal relative difference for optimal angles is 
about 2.3% (the angle  for ssf PM). 
3.2. Sum frequency generation 

The results of the efficiency  calculations for some cases of SFG mentioned in [3, 5] are 
given in Table 3, and the extreme surfaces are shown in Figs. 6–8. As seen in the figures, the 
shapes of the extreme surfaces differ significantly across wavelength sets for the YCOB 
crystal. In contrast, for BiBO and LCB, there is a noticeable similarity in the surface shapes at 
the corresponding PM conditions. For SFG and sff PM, using pump waves of different 
wavelengths allows achieving PM in the GdCOB crystal, where it is absent for SHG. 

Table 3. The maximal achievable SFG efficiencies  and corresponding angular parameters. 
Scalar PM Vector PM 

Angles, deg. Angles (pump 
beams), deg. 

Angles (SFG 
beam), deg. 

Cr
ys

ta
l 

1, m 2, m 3, m 

  

extr
scal , 

2

2

pm

V
 1p, 

1p 
2p, 

2p 
  

extr
vect , 

2

2

pm

V
   

 

1 2 3 4 5 6 7 8 9 10 11 12 
Type I PM (ssf) 

Gd
CO

B 

1.0642 1.9079 0.6831 66.7 145.6 0.79 coincides with scalar ssf 

0.5321 1.0642 0.3547 74.9 103.6 0.18 coincides with scalar ssf 

YC
OB

 

1.0642 1.9079 0.6831 67.2 152.5 0.80 coincides with scalar ssf 

0.6594 1.3188 0.4396 150.2 50.5 1.88 coincides with scalar ssf 

Bi
BO

 

1.0642 1.9079 0.6831 158.8 210.8 2.15 almost coincides with scalar ssf 

0.5321 1.0642 0.3547 129.2 0 0.047 coincides with scalar ssf 

LC
B 

1.0642 1.9079 0.6831 34.3 180 0.058 coincides with scalar ssf 

Type II PM (sff) 

Gd
CO

B 

1.0642 1.9079 0.6831 96.0 228.6 0.25 95.9 
229.4 

96.1 
227.6 96 228.8 0.25 

(2.7%) 

1.0642 1.9079 0.6831 93.5 141.4 0.52 93.4 
140.5 

93.6 
142.7 

93.5 141.2 0.53 
(2.3%) 

YC
OB

 

1.9079 1.0642 0.6831 85.3 84.2 0.041 almost coincides with scalar sff 
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1 2 3 4 5 6 7 8 9 10 11 12 

0.6594 1.3188 0.4396 34.1 288.6 1.09 41.5 
273.1 

47.5 
293.1 43 280 1.15 

(6.1%) 
1.3188 0.6594 0.4396 115.6 100.8 0.96 coincides with scalar sff 

1.0642 1.9079 0.6831 159.6 126.9 1.02 142.8 
87.6 

177.7 
117.9 141.5 99.0 1.19 

(17%) 

Bi
BO

 

1.9079 1.0642 0.6831 145.9 107.7 1.10 135.4
113.4 

131.7 
99.3 133.3 104.2 1.14 

(11 %) 
0.5321 1.0642 0.3547 112.1 221.5 0.0033 almost coincides with scalar sff 

1.0642 1.9079 0.6831 137.6 140.0 0. 011 136.7 
137.6 

217.6 
221.6 137 219 0. 012 

(4%) LC
B 

1.9079 1.0642 0.6831 112.3 138.9 0.0035 coincides with scalar sff 

 
Fig. 6. The extreme surfaces for SFG in monoclinic crystals of point symmetry group m, in pm2/V2. The 
change in wavelengths under interaction is indicated by arrow notation in μm units. 
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Fig. 7. The extreme surfaces for SFG in the BiBO crystal (point group of symmetry 2), in pm2/V2. The change 
in wavelengths under interaction is indicated by arrow notation in μm units. 
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Fig. 8. The extreme surfaces for SFG in the LCB crystal (point group of symmetry 2), in pm2/V2. The change in 
wavelengths under interaction is indicated by arrow notation in μm units. 

The results of the optimization are given in Table 3. For brevity, the angle values listed 
in Table 3 correspond to only one of the equivalent maxima. As shown in Table 3, the highest 
efficiency is observed for the BiBO crystal across all analyzed PM types. At the same time, the 
relative increase of SFG efficiency for BiBO is the highest among other crystals (II type PM). 
However, this excess (about 6%) remains generally insignificant compared with the values 
observed for orthorhombic crystals [2]. The lowest efficiency values, as well as those for 
SHG, are demonstrated by the LCB crystal. 

Also note that, for the BiBO crystal, in some cases the sff PM condition can be satisfied 
by a mutual change in the input waves' polarization (fsf PM or type III PM [5,7,16]). The 
extreme surfaces for these cases are remarkably different; however, the evolution of the 
surface in the transition from one type of PM to another can be traced, as was done for the 
KTA crystal in [2]. 
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3.3. Difference frequency generation 

The results of calculations of the efficiency  for difference frequency generation in BiBO and LCB 
crystals are given in Table 4. For brevity, we do not provide the examples of extreme surfaces (in 
most cases they are visually similar to the ones shown in Figs. 7,8) as well as the results for GdCOB 
and YCOB crystals, because the maximum achievable efficiencies extr (both for scalar and vector 
PM) for DFG and SFG in these crystals are equal for the same sets of wavelengths. It is the 
consequence of the Kleiman symmetry rule that is strictly fulfilled for the crystals, i.e. of the fact that 
the efficiency determined by formula (1) will be the same for the processes 1+2=3, 3–2=1,  
3 – 1 = 2 in this case (the same situation was occurred for orthorhombic crystals, see [2]).  

Table 4. The maximal achievable DFG efficiencies  and corresponding angular parameters. 

Scalar PM Vector PM 
Angles,  
deg. 

Angles  
(pump 
beams), deg. 

Angles (SFG 
beam),  
deg. 

Cr
ys

ta
l 

1,  
m 

2,  
m 

3, 
m 

  

extr
scal , 

pm2/V2 

1p, 

1p 
2p, 

2p 
  

extr
vect , 

pm2/
V2 

 

1 2 3 4 5 6 7 8 9 10 11 12 
Type I PM (ffs) 

0.4396 0.6594 1.3188 104.2 134.3 0.95 74.9 
313.8 

74.8 
314.2 75.0 313.0 0.97 

(2.2%) 
0.4396 1.3188 0.6594 131.2 154.0 2.15 almost coincides with scalar ffs Bi

BO
 

0.6831 1.9079 1.0642 141.7 160.8 2.47 almost coincides with scalar ffs 

0.3547 1.0642 0.5321 112.2 81.6 0.010 coincides with scalar ffs 

LC
B 

0.6831 1.9079 1.0642 42.0 93,3 0.038 coincides with scalar ffs 
Type II PM (fsf, fss) 

0.4396 0.6594
(s) 

1.3188
(s) 

44.6 8.0 0.68 32.8 
309.6 

31.8 
302.3 

36.0 323.0 0.89 
(30.2%) 

0.4396 1.3188
(s) 

0.6594
(f) 

62.6 279.9 0.94 almost coincides with scalar fsf 

0.4396 0.6594
(s) 

1.3188
(f) 

32.6 288.4 1.02 43.4 
287.6 

44.4 
295.2 

43 271 1.23 
(20.5%) 

0.6831 1.9079
(s) 

1.0642
(f) 

34.5 287.4 1.09 44.9 
283.1 

45.6 
293.5 

45 277.0 1.21 
(11.7%) 

Bi
BO

 

0.6831 1.9079
(s) 

1.0642
(s) 

35.6 6.8 0.85 150.6 
142.0 

158.3 
128.0 

146 147 1.30 
(52.8%) 

0.3547 1.0642
(s) 

0.5321
(s) 

129.3 23.4 0.0136 124.2 
22.3 

124.2 
14.8 

124 26 0.0144 
(5.8%) 

0.3547 0.5321
(s) 

1.0642
(f) 

112.1 221.6 0.0033 almost coincides with scalar fsf 

0.6831 1.9079
(s) 

1.0642
(s) 

33.5 218.0 0.015 38.8 
221.2 

39.1 
212.0 

39.0 226.2 0.019 
(22.1%) 

LC
B 

0.6831 1.9079
(s) 

1.0642
(f) 

67.7 41.2 0.0034 coincides with scalar fsf 

However, the difference in extr between SFG and DFG in BiBO and LCB can be 
significant. In particular, the efficiency for DFG ffs PM in BiBO  (1=0.6831 m, 2=1.9079 m, 
3=1.0642 m) is equal to 2.47 pm2/V2, whereas for the corresponding SFG sff PM it is only 
1.19 pm2/V2; for LCB the value of extr

vect  for DFG fss PM is about 0.014 pm2/V2 (1=0.3547 m, 

2=1.0642 m, 3=0.5321 m) and for corresponding SFG ssf PM is 0.047 pm2/V2 and so one. 
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As in the case of SFG, the highest efficiency increase (tens of percent) from vector PM 
use occurs in the BiBO crystal. Furthermore, among all the crystals studied, BiBO shows the 
highest efficiency values (obviously due to its high nonlinear susceptibilities; see Table 1), 
while the lowest values are observed for the LCB crystal. 

4. Conclusions 
The extreme surfaces technique is used for the determination of the maximal achievable 
efficiency  of second harmonic, sum and difference frequency generation in monoclinic 
nonlinear optical crystals GdCOB (GdCa4O(BO3)3), YCOB  (YCa4O(BO3)3), BiBO (BiB3O6), LCB 
(La2CaB10O19) for the case of strict PM. Both vector and scalar PM cases are analyzed and 
compared for all crystals. The optimal geometries of vector PM, i.e., the directions of the 
wave vectors of the pump and output beams, that maximize efficiency are determined. 

It is shown that, contrary to the previously analyzed case of orthorhombic crystals, the 
increase in efficiency caused by vector PM is not higher than tens of percent (the maximal 
value is about 53% for BiBO in the case of difference frequency generation). The highest 
absolute values of efficiency are also observed for BiBO, ranging from about 0.9 to 
2.5 pm2/V2. The lowest efficiency values, for all processes considered, take place for the LCB 
crystal (~10-3… 10-2 pm2/V2). 
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Анотація. Визначено оптимальні геометрії векторного фазового синхронізму для 
випадків генерації другої гармоніки, сумарної та різницевої частот у моноклінних 
нелінійно-оптичних кристалах, а саме: GdCa4O(BO3)3, YCa4O(BO3)3 (точкова група 
симетрії m), BiB3O6 та La2CaB10O19 (точкова група симетрії 2). Для визначення 
напрямків хвильових векторів, що забезпечують найвищу ефективність генерації, було 
використано метод екстремальних поверхонь. Отримані результати порівнюються з 
результатами скалярного фазового синхронізму. Показано, що векторний фазовий 
синхронізм підвищує ефективність на десятки відсотків порівняно зі скалярним 
випадком (близько 53% для кристала BiB3O6). Кристал BiB3O6 проявляє найвищі 
абсолютні значення ефективності, тоді як найнижчі - кристал La2CaB10O19. 

Ключові слова: моноклінні кристали, генерація другої гармоніки, генерація сумарної 
частоти, генерація різницевої частоти, двовісні кристали, геометрія взаємодії, 
екстремальні поверхні 


