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1.Introduction
Determining the maximum theoretically achievable values of certain effects in crystalline

materials is an important problem from an applied perspective, with solutions indicating
ways to increase the efficiency of material use in devices. If the value of the effect, the
maximum (in certain applications, possibly the minimum) of which is sought, does not
depend on the geometric characteristics of the device, the absolute values of the applied
loads, etc,, it can be considered as a characteristic of the material and used for comparison
with other materials.

In nonlinear optics problems, the conversion efficiency can be considered a
characteristic, or rather a component separated from it, depending only on the wave
directions and the material parameters. In our previous papers [1,2], we studied the
maximum achievable efficiencies of second-harmonic (SHG), sum-frequency (SFG), and
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difference frequency (DFG) generation in uniaxial and biaxial (orthorhombic) crystals. The
highest achievable value was determined by optimizing the propagation directions of the
interacting waves, which were generally considered non-collinear; in other words, the vector
phase matching (PM) case was analyzed. In such a more general formulation of the problem,
this analysis was carried out for the first time. In this work, we extend our approach to
lower-symmetry nonlinear optical crystals of the monoclinic system. The nomenclature of
such crystals is not significant: as far as we know, only for four of them - GdCasO(BO3)3
(GdCOB), YCasO(B03)3 (YCOB), BiB30¢ (BiBO), LazCaB19019 (LCB), it is a set of values
sufficient for optimization which have been determined experimentally or theoretically (see
[3-5]). The optimization process for monoclinic crystals is somewhat complicated because
the position of the two main axes of the optical indicatrix is not fixed, but depends on the
light wavelength. The optimization results, as before, are presented using a special type of
surfaces - the extreme ones, proposed by us earlier for the visualization of the anisotropy of
different physical effects in crystals. The results for vector PM are compared with those for
scalar PM when the directions of the pump and output beams coincide.

2.Basic relations and parameters of crystals
As it is known, the total efficiency of the nonlinear three-wave mixing processes (see, e.g.,

[6,7]) is proportional to the geometrical factor:
N 2
(esdesé, )
n(23)n(42)n(4)’

where /; are the wavelengths, d is the tensor of nonlinear coefficients, n(A1), n(Az), n(A3) are

n= (1)

the refraction indices of pump (1, 2) and output (3) beams, €;, €,, €3 are the unit vectors

parallel to the electric vectors of the corresponding waves, ¢; =.§f] ¢ is the dielectric

permittivity tensor, T] is the electric displacement unit vector [8]. The dimension of 7 is

pm2/V2, and it represents only the geometrical factor of the total efficiency of nonlinear
optical process. This factor is determined by crystals symmetry and the relationship between
the nonlinear coefficients. It allows one to construct extreme surfaces representing the
highest achievable values of 7 for all possible directions of the output wave vector I%,
determined by the angles 6, ¢ of the spherical coordinate system (CS). Since this paper is
devoted to the characteristics of materials, the efficiency in the form (1), which does not
account for the length of the nonlinear medium or the powers of the interacting waves, is
convenient for our analysis.
In the case of the strict vector PM, the following expression for the wave vectors should
be satisfied:
ky =k, 1k, (2)
where the upper sign corresponds to SHG or SFG and the lower sign to DFG. As well as

in [1,2], in our calculations, the wave vector I% is passed through the full spherical angle
(6=0...m, ¢ = 0...2m). For each given I%, the condition (2) can be fulfilled for a set of El, Ez

pairs, and the value of the efficiency 7 is generally different for different El, Ez . Thus, for
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each I%, we determine such a k;, k, pair that maximizes the efficiency; as a result, the

dependence 7max ( E3) is obtained, which can be represented by a surface. Because each point
of this surface is obtained after optimization, we call it the extreme one. The highest value of

Nmax (designed further as n&Y ) is the sought value of the maximal achievable efficiency, the

determination of which is the objective of our work. A more detailed explanation of the
optimization technique for the case of biaxial crystals is given in [2]. The analysis of the
scalar PM was also carried out for comparison, and the corresponding maximal achievable

efficiency for scalar case n&Xlf was determined.

All calculations for SHG and SFG were carried out for two types of PM determined by
the velocities (and polarizations) of interacting beams: (i) both pump waves are ‘slow’, i.e.
correspond to higher value of the refraction index (of two possible for a given direction of
the wave vector), and the output wave is ‘fast’ (ssf or type [ PM) and (ii) one pump wave is
slow and the other is fast (sff, fsf or type Il PM). For DFG in biaxial crystal type I, PM is ffs, and

for type 1], it is fss or fsf. The mutual orientations of the wave vectors of the pump El, Ez,

and output I% waves for the case of SFG are shown in Fig. 1.

Z A

7(®,)
2

Fig. 1. The mutual orientations of the wave vectors of the pump El , Ez and output I% waves (the case
of SFG); C is the line of cross-section of wave vector surfaces of initial waves (see [2] for details).

The extreme surfaces are constructed, and optimal PM conditions are determined
for GACOB, YCOB, BiBO, and LCB crystals that belong to the point symmetry groups of
symmetry m or 2 (the third point group of the monoclinic symmetry (2/m) is
centrosymmetric, so the considered effects are not observed in crystals of this group).
The nonlinear susceptibilities of the crystals taken from [3-5] are indicated in Table 1. It
should be noted that nonlinear susceptibilities were not measured for the LCB crystal,
and only the calculated values are known for it [5]. However, as shown in Table 1, these
values of the nonlinear susceptibilities do not satisfy the Kleinman symmetry rule (di4 =
dz2s = d3e, dis = d21, d23 = d34). Nevertheless, the Kleinman symmetry can be violated (e.g.,
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for BiBO); in the case of LCB, this violation is significant - the corresponding coefficients
differ even in sign. Even though this casts doubt on the accuracy of the coefficient
determination in [5], we have also performed calculations for such values, since for
monoclinic crystals of point group 2, the amount of appropriate data is limited.

The refractive indices were calculated using the Sellmeier equations given in [3]. All extreme
surfaces were constructed in a crystal-optics CS connected with the output light wave, i.e, the
orthogonal system was built on the main axes of the optical indicatrix (where the X axis
corresponds to the lowest value of the main refraction index, the Y axis to the intermediate, and
the Z-axis to the highest one). Because the components of the tensor of nonlinear coefficients d
for the BiBO crystal are given in a special orthonormalized crystal-physics CS that differs from the
crystal-optics one (see Fig. 2), the tensor transformations were carried out in accordance with
known rules [9,10]. For GACOB and YCOB crystals, the crystal-physics CS coincides with the
crystal-optics one [11,12]. The orientation of the axes for LCB is not described; however, it is
known that the crystal-optic system for the crystal is similar to the ones of GACOB and YCOB,
particularly, the Y axis coincides with the crystallographic axis b [13-15].

Table 1. Parameters of the considered crystals.

Crystal Nonlinear susceptibilities, djj, pm/V

Point group of symmetry m
GdCOB* di1~0; di2 = d26 = 0.27; d13 = d35 = -0.85; d31 = di5 = 0.20;
d32 =d2a=2.23; d33 =-1.87
YCOB* d11 ~ 0; d12 = dzs = 0.24; d13 = d35 = —0.73; d31 = d15 = 0.41;
dzz2 = d24 = 2.35; d33 = -1.60
Point group of symmetry 2

BiBO d14 = 2.4; d16 = 2.8; d21 = 2.3; dzz = 253, d23 = —1.3;
d25 = 2.3; d34 = —0.9; d36 =24
LCB d14 = —0.05; d16 = —0.15; d21 = 0.55; dzz = —0.25; d23 = 0.4;

d25 = 0.02; d34 = —0.25; d36 = —0.05

*Given equalities of the nonlinear susceptibilities for GACOB and YCOB correspond to the Kleinman
symmetry conditions, which are valid for these crystals [4].

Moreover, the principal axes of the indicatrix do not coincide for different wavelengths,
which should also be taken into account. However, sufficiently complete information for this
is known only for BiBO [4,10]; for other crystals, we neglect this difference in the
calculations. As shown below, such an approximation is quite acceptable for BiBO, although
its validity for other crystals requires further investigation.

The wavelength dependence of the angle ¢ between abscissa axes of crystal-physics and
crystal-optics CS for BiBO was determined in [8] for certain values of A in the range of
0.365...2.325 um. Since our calculations require values of this angle at arbitrary wavelengths,
we approximated the dependence found in [10]. As it is seen from Fig. 3, it is well described
by the function:

A—a
2)= , 3
) by+by(A—a)+by(A—a) ©

where [p]=degrees, [A]=um, a=0.215%0.009 pm, bo=(3.8£0.3)x10-* um/deg,
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b1=0.02023+£7x10-5 deg?, b,=(6.5£0.3)x10-* (umxdeg)-1.

A E’
—(0)
e
2
A _é3(p)

—=(0)

a 3

Fig. 2. The mutual orientations of the crystallographic CS (the unit vectors a, b ¢,the angle between
a and ¢ is B = 105.62¢ [4]), crystal-physics CS (the unit vectors é,-(”), i =1,2,3), and crystal-optics CS

(the unit vectors é,-(o), i =1,2,3) for the BiBO crystal. The nonlinear susceptibilities were determined in

the crystal-physics CS [9], however, in accordance with the algorithm used for calculations, the minimal
main value of the refraction index must correspond to the abscissa axis, which is why the unit vector

E}D) of the crystal-optics CS coincides with é’ép) of the crystal-physics one. The orientations of other
axes of crystal-optics CS is shown in accordance with [9].

47.

47.0

46.5
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44.0

48575 0 15 20 25
A, um
Fig. 3. The dependence of the angle ¢ (deg) on the wavelength (um) for the BiBO crystal (circles) [8] and

its approximation by the function (3) (line).

At that, with the known values of ¢, the components of dielectric permittivity tensors
for input waves were determined in the crystal-optics CS connected with the output beam in
accordance  with  known rules [6]. Because the directions of the
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Y-axes (unit vector éga)) of indicatrices for all wavelengths coincide for the BiBO crystal, only

one non-zero non-diagonal component &3 appeared as a result of such a tensor
transformation.

3.3. Results and Discussion

3.1. Second-harmonic generation

The wavelengths of pump beams used in the calculations of the maximal achievable SHG
efficiency are equal to 1.0642 um for all considered crystals.

The general and the top views of extreme surfaces of the SHG efficiency 7max for the
investigated crystals are shown in Figs. 4,5. The black lines on the figures correspond to the scalar
PM conditions. It should be noted that the point (0;0;0), as well as the lines connecting this point
with the edges of the extreme surface, do not belong to this surface and appear in the figures only
in connection with the method of 3D surface construction in the software used.

Because the condition (2) is not fulfilled for type II PM in GDCOB at the considered
wavelength, only one extreme surface (for ssf PM) is shown for this crystal. As it is seen from
Figs. 1,2, the forms of ssf extreme surfaces are similar for GACOB and YCOB (belonging to the
point group of symmetry m) crystals. In contrast, for BiBO and LCB (belonging to the point group
of symmetry 2), they are essentially different. Obviously, it is caused by different coordinate
transformation rules for BiBO and LCB, and by different relationships among the values of the
nonlinear susceptibilities dj;.

The values shown in the parentheses in the last column of Table 2 are the relative
increase of SHG efficiency caused by vector PM in relation to the scalar one,

y =g —ngsy ) /nesy (in percents).
GdCOB
ssf

-04
-0.4 -0.2 0 0.2 0.4

— 04
02

YCOB

05 -
05 + V4 005

005 005

Fig. 4. Extreme surfaces for SHG in monoclinic crystals of point symmetry group m, in pm2/V2.
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Fig. 5. Extreme surfaces for SHG in monoclinic crystals of point symmetry group 2, in pm2/V2.

Table 2. The maximal achievable SHG efficiencies 77 and corresponding angular parameters.

Scalar PM Vector PM
Angles Angles
Crystal | Angles, deg. nexr, (pump beams), (SH beam), next,
pmz/V2 deg. deg. pmz/V2
0 | @ O1p, Q1p | Ozp, Q2p 0 | @
Type I PM
GdCOB 113.0 47.6 0.61
Y,COB 67.1 1429 068 coincides with scalar ssf
BiBO 154.1 42.6 2.0
LCB 36.6 180 0.056
Type Il PM
82.3 82.2 0.064
YCOB 98.0 256.0 0.063 283.5 284.5 82.2 284 (1.4%)
BiBO 144.9 107.6 1.09 138.1 128.1 133.3 103.2 L1
99.6 106.5 (2%)
LCB 124.6 220.8 0.0070 almost coincides with scalar sff*

*the relative increase of SHG efficiency is lower than 1%.

As our calculations show, the use of type I (ssf) vector PM does not allow increasing the
efficiency 7 relative to the scalar PM case for all investigated crystals. In all cases, the lines
corresponding to scalar PM in the figure frame the edges of extreme surfaces and pass

through the points corresponding to n&Y . Practically the same situation takes place in the

case of type Il (sff) vector PM in YCOB, BiBO, and LCB - the relative increase of SHG efficiency
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caused by vector PM is no more than 2%. It is contrary to the case of orthorhombic crystals,
where the use of vector PM allows essentially increasing the value of the SHG efficiency, up
to several tens of percent for a number of crystals, and even almost one and a half times for
KB50g:4H:0 [2]. The BiBO crystal demonstrates the highest SHG efficiency for both types of
PM, whereas LCB shows the lowest.

It should also be noted that accounting for the rotation of the BiBO crystal's optical
indicatrix with wavelength changing has practically no effect on the obtained result. For
example, the efficiency value obtained without accounting for this rotation differs less than
1% from the value given in Table 2. The maximal relative difference for optimal angles is
about 2.3% (the angle 8 for ssf PM).

3.2. Sum frequency generation

The results of the efficiency 1 calculations for some cases of SFG mentioned in [3, 5] are
given in Table 3, and the extreme surfaces are shown in Figs. 6-8. As seen in the figures, the
shapes of the extreme surfaces differ significantly across wavelength sets for the YCOB
crystal. In contrast, for BiBO and LCB, there is a noticeable similarity in the surface shapes at
the corresponding PM conditions. For SFG and sff PM, using pump waves of different
wavelengths allows achieving PM in the GACOB crystal, where it is absent for SHG.

Table 3. The maximal achievable SFG efficiencies 1 and corresponding angular parameters.

Scalar PM Vector PM

-g Angles, deg, nggglr , | Angles (pump Angles (SFG nextr,

5 Aypm | Az,pm | Az pm i beams), deg. beam), deg. .

© pm 01p, 02,,, pm

0 [ : (] ) :
v P1p P2p v
1 ]2 [ 3 | 4 | 5 | 6 | 7 ] 8 ] 9 [ 10 ] 11 J12
Type I PM (ssf)

m

S 10642 19079 06831 667 1456 079 coincides with scalar ssf

3

o 05321 1.0642 03547 749 1036 018 coincides with scalar ssf

o

S 10642 19079 06831 672 1525 0.80 coincides with scalar ssf

o 06594 13188 04396 1502 505 1.88 coincides with scalar ssf

[aa)]

& 10642 19079 06831 1588 2108 215 almost coincides with scalar ssf

- 05321 1.0642 03547 1292 0 0.047 coincides with scalar ssf

3 10642 19079 06831 343 180 0.058 coincides with scalar ssf

Type I1 PM (sff)
S 959 961 025
'é 1.0642 19079 06831 960 2286  0.25 2204 2276 96 22838 (2.7%)
934 936 935 1412 0.53

2 1.0642 19079 0.6831 935 1414 052 1405 1427 (2.3%)

o

>~ 19079 10642 06831 853 84.2 0.041 almost coincides with scalar sfff
04102 UKr. J. Phys. Opt. 2025, Volume 26, Issue 4



The Optimal Vector Phase

1 ]2 | 3 | 4 | 5 6 7 [ 8 ] 9 [ 10 [ 11 [12
41.5 47.5 1.15
0.6594 13188 04396 34.1 2886 1.09 2731 2931 43 280 (6.1%)
o 13188 06594 04396 1156 1008 0.96 coincides with scalar sff
[aa)]
= 1428 1777 1.19
)
1.0642 19079 0.6831 1596 1269 1.02 876 1179 1415 99.0 (17%)
1354 1317 1.14
19079 1.0642 06831 1459 1077 1.10 1134 993 1333 1042 (11 %)
05321 1.0642 03547 1121 2215 0.0033 almost coincides with scalar sfff
m 1367 2176 0.012
g 10642 19079 06831 1376 1400 0.011 1376 2216 137 219 (4%)
19079 1.0642 06831 1123 1389 0.0035 coincides with scalar sff
GdCOB
ssf sff
1.0642 + 1.9079 — 0.6831 1.0642 + 1.9079 — 0.6831
y]().(v
06 04 02,
0.4 0.2
02l 0 0.1
0 % 0.2 0
02 0.4 ol
-0.4 06
064 05 0o os 02
03 X 02 \\
(; Y\E/l s 0 =
US 05 !
YCOB
ssf
05321 + 1.0642 —0.3547
Y]ois
o] o V
005 %% 0
0 \' . -0.05

-0.05
0.1
-0.15.

~ _
01 VA T
N X ol
\L// 0
-0.1 0.1

ssf

1.0642 +1.9079 — 0.6831

sff

1.0642 + 1.9079 — 0.6831

YI 0.4+

04 04

Fig. 6. The extreme surfaces for SFG in monoclinic crystals of point symmetry group m, in pm2/V2. The
change in wavelengths under interaction is indicated by arrow notation in pm units.
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BiBO
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1 o5l 05
05 05,
o 0
0 \ {
o 0.5+ 0.5
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i < 4 s 0 05 1 .
05 1 X I T
0 To0s 05
cof
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1.0642 +1.9079 — 0.6831

ME

1

sff
1.9079 +1.0642 — 0.6831
ME
1 0.5
0.5
0
0
-0.5
-0.5
-1
1 -1 0.5 0 0s 1
1 b X
05 S VA /‘/./ !

Fig. 7. The extreme surfaces for SFG in the BiBO crystal (point group of symmetry 2), in pm2/V2. The change
in wavelengths under interaction is indicated by arrow notation in pm units.
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LCB
ssf sif

0.5321 +1.0642 —0.3547 0.5321 + 1.0642 —0.3547

YT 0.047 YT x107

0.02+

- m
ol
0
-0.02 -
002 5
0.04
0.04 004 002 0 0.02 __0.04 P R S
004 X X %107
004 <
002 2 R
0 x10°
ssf
1.0642 + 1.9079 — 0.6831
0.05
0.05 4 Y]
O
0
005 . :
005 0 0.05
" o0s
“
sff
1.9079 +1.0642 — 0.6831
x10? x10°
Y| d
S 2
5. N 1
N 1
0
0. 0,
-5 -1 !
5
2 2
L E 0 s L 5 0
X a0’ 2 ! 't
~ Lol 2 X

Fig. 8. The extreme surfaces for SFG in the LCB crystal (point group of symmetry 2),in pm2/V2 The change in
wavelengths under interaction is indicated by arrow notation in pm units.

The results of the optimization are given in Table 3. For brevity, the angle values listed
in Table 3 correspond to only one of the equivalent maxima. As shown in Table 3, the highest
efficiency is observed for the BiBO crystal across all analyzed PM types. At the same time, the
relative increase of SFG efficiency for BiBO is the highest among other crystals (Il type PM).
However, this excess (about 6%) remains generally insignificant compared with the values
observed for orthorhombic crystals [2]. The lowest efficiency values, as well as those for
SHG, are demonstrated by the LCB crystal.

Also note that, for the BiBO crystal, in some cases the sff PM condition can be satisfied
by a mutual change in the input waves' polarization (fsf PM or type 1l PM [5,7,16]). The
extreme surfaces for these cases are remarkably different; however, the evolution of the
surface in the transition from one type of PM to another can be traced, as was done for the
KTA crystal in [2].
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3.3. Difference frequency generation

The results of calculations of the efficiency n for difference frequency generation in BiBO and LCB
crystals are given in Table 4. For brevity, we do not provide the examples of extreme surfaces (in
most cases they are visually similar to the ones shown in Figs. 7,8) as well as the results for GdCOB
and YCOB crystals, because the maximum achievable efficiencies 7 (both for scalar and vector
PM) for DFG and SFG in these crystals are equal for the same sets of wavelengths. It is the
consequence of the Kleiman symmetry rule that is strictly fulfilled for the crystals, i.e. of the fact that
the efficiency determined by formula (1) will be the same for the processes wi+a=ws3, @3-=wi,
@3 — o1 = o in this case (the same situation was occurred for orthorhombic crystals, see [2]).

Table 4. The maximal achievable DFG efficiencies 1 and corresponding angular parameters.

A1, A2, A3, Scalar PM Vector PM
pm pm pm Angles, nexr, Angles Angles (SFG nextr
_ deg. scazl . (pump beam), r\;:zc /
g pm?/V beams), deg. deg. 32
E’ 0 ] elp, 02p, 0 ]
P1p Pzp
1] 2 [ 3 [ 4 | 5 T 6 | 7 [ 8 [ o [ 10 [ 11 [ 12
Type I PM (ff5)
749 74.8 0.97
o 04396 0.6594 13188 1042 1343 095 3138 3142 75.0 313.0 (2.2%)
E 04396 13188 0.6594 131.2 1540 215  almostcoincides with scalar ffs
0.6831 19079 1.0642 141.7 1608 247  almostcoincides with scalar ffs
m 03547 1.0642 0.5321 1122 816 0.010 coincides with scalar ffs
Q
— 06831 19079 1.0642 420 93,3 0.038  coincides with scalar ffs
Type Il PM (fsf, fss)
04396 0.6594 13188 446 80 0.68 32.8 31.8 36.0 323.0 0.89
)] )] 309.6 3023 (30.2%)
0.4396 35)3 188 (()};)6594 626 2799 094 almost coincides with scalar fof
8 04396 0.6594 13188 32.6 2884 1.02 43.4 44.4 43 271 1.23
& )] 1)) 287.6 2952 (20.5%)
0.6831 19079 1.0642 345 2874 1.09 449 456 45 277.0 121
)] 1)) 283.1 2935 (11.7%)
0.6831 19079 1.0642 356 638 0.85 1506 1583 146 147 1.30
(s) (s) 142.0 1280 (52.8%)
0.3547 1.0642 0.5321 1293 234 0.0136 1242 1242 124 26 0.0144
)] )] 223 14.8 (5.8%)
- 0.3547 (()5;321 350642 1121 2216 0.0033 almost coincides with scalar fsf
S 06831 19079 10642 335 2180 0015 388 39.1 39.0 2262 0.019
(s) (s) 2212 2120 (22.1%)
0.6831 gs.;)079 350642 67.7 412 0.0034 coincides with scalar fif

However, the difference in nextr between SFG and DFG in BiBO and LCB can be
significant. In particular, the efficiency for DFG ffs PM in BiBO (11=0.6831 um, 4,=1.9079 pm,
23=1.0642 pm) is equal to 2.47 pm?/V2, whereas for the corresponding SFG sff PM it is only
1.19 pm?/V?; for LCB the value of n&Y for DFG fss PM is about 0.014 pm?/V?2 (11=0.3547 pm,

ect

22=1.0642 pm, 13=0.5321 um) and for corresponding SFG ssfPM is 0.047 pm?/V2 and so one.
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As in the case of SFG, the highest efficiency increase (tens of percent) from vector PM
use occurs in the BiBO crystal. Furthermore, among all the crystals studied, BiBO shows the
highest efficiency values (obviously due to its high nonlinear susceptibilities; see Table 1),
while the lowest values are observed for the LCB crystal.

4.Conclusions

The extreme surfaces technique is used for the determination of the maximal achievable
efficiency n of second harmonic, sum and difference frequency generation in monoclinic
nonlinear optical crystals GACOB (GdCasO(B03)3), YCOB (YCa4O(BO3)s), BiBO (BiB30s), LCB
(LazCaB10019) for the case of strict PM. Both vector and scalar PM cases are analyzed and
compared for all crystals. The optimal geometries of vector PM, i.e, the directions of the
wave vectors of the pump and output beams, that maximize efficiency are determined.

It is shown that, contrary to the previously analyzed case of orthorhombic crystals, the
increase in efficiency caused by vector PM is not higher than tens of percent (the maximal
value is about 53% for BiBO in the case of difference frequency generation). The highest
absolute values of efficiency are also observed for BiBO, ranging from about 0.9 to
2.5 pm?/V2, The lowest efficiency values, for all processes considered, take place for the LCB
crystal (~10-3... 10-2 pm2/V2).
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AHomayis. BusHaueHO onmumasabHi eeomempii 8eKMoOpHO20 (PA308020 CUHXPOHIZMY 0.5
sunadkis zeHepayii dpyzoi zapMmoHiKu, cymapHoi ma pizHuyesoi yacmom y MOHOKAIHHUX
HeAalHilIHo-onmuyHux Kpucmaaax, a came: GdCa,O(BO3); YCa,O(BO3); (moukosa zpyna
cumempii m), BiB30s ma LazCaB19019 (moukosa zpyna cumempii 2). [as eusHaueHHs
HanpsMKig X8U/b08UX 8€KMOpIB, ujo 3a6e3neuyroms Halisuuly edpekmugHicms 2eHepayii, 6y.10
BUKOPUCMAHO Memod eKCmpeMaabHUX No8epXxoHb, OMpUMaHi pe3yabmamu nopisHIIMbCs 3
pe3ysbmamamu ckaasipHo2o ¢$azos020 cuHxpoHizmy. IlokasaHo, wo eekmopHuii ¢azosut
CUHXPOHI3M nideuwye egekmusHicmb Ha decsimku 8idcomkie NOpigHSAHO 3i cKAASPHUM
sunadkom (6ausvko 53% 0das kpucmasaa BiB30g). Kpucman BiB30s nposieasie Hatisuwji
abcoaromHi 3HaveHHs epekmugHocmi, modi ik HatiHuxcyi - kpucmana LazCaB101o.

Knawuoei caoea: MoHOKAIHHI kpucmaau, eeHepayisi dpyeoi 2apMoHiku, zeHepayis cymapHoi
yacmomu, 2eHepayis pizHuyesoi uacmomu, 0808iCHI kKpucmasau, eeomempisi 83aEMOOI],
eKcmpema/ibHI N08epxHi
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